Как подобрать для питания конкретной нагрузки
Предположим, нам необходимо запитать какую-то конструкцию или готовый механизм. Как подобрать подходящий БП? Для этого учитываем три основных критерия:
- необходимое для прибора напряжение;
- потребляемый прибором ток;
- наличие или отсутствие стабилизаторов тока или напряжения.
Пусть нам нужно питать низковольтный светодиодный прожектор. Рассчитан он, как указал производитель, на напряжение 12 В, потребляемая мощность 7 Вт.
Сначала рассчитываем потребляемый осветителем ток: 7 : 12 = 0,58 А. Как правило, осветительные приборы требуют стабилизации тока. Значит, нам нужен БП со стабилизатором тока на 580 А. Попробуем найти такой источник питания в интернете. Вот он. Ток стабилизации, правда, на 20 мА больше положенного, но это некритично, поскольку найти источник на точно заданный ток невозможно.
Такой БП вполне подходит для наших целей
Теперь запитаем магнитолу. Точно так же рассчитываем, читаем на шильдике или измеряем ток на максимальной громкости. Предположим, 8А. Напряжение электропитания бортовой сети автомобиля нам известно — 12–14 В. Какая стабилизация нужна? В принципе, никакой — в автомагнитоле есть встроенный стабилизатор. Важно, чтобы БП выдавал 12–14 В и обеспечивал ток до 10 А (с запасом). Это составит 140 Вт.
БП со стабилизатором на напряжение 12 В мощностью 120 Вт
В принципе, ничего плохого не будет, если мы возьмём 12-вольтовый БП со стабилизацией напряжения. Но найти сейчас в продаже БП без стабилизатора достаточно сложно.
Для питания светодиодной ленты, конечно, мы выберем БП соответствующей мощности со стабилизатором напряжения 12 или 24 В (зависит от типа используемой ленты).
Импульсный, с трансформатором или гасящим конденсатором? От последнего лучше сразу отказаться — очень опасно. Но если БП будет встроен в прибор, и его никто не будет разбирать, то останется на крайний случай. При этом, конечно, питаемое устройство должно быть маломощным.
Ну а импульсный или трансформаторный — тут решать каждому индивидуально. Если потребляемые токи большие, лучше предпочесть импульсные приборы, поскольку трансформаторные большего размера и веса. Малое потребление? Подойдёт и трансформаторный, особенно если он уже лет 5 валяется на чердаке без дела.
Единственное, выбирая импульсный БП, не следует забывать про электромагнитные помехи и помехи по цепям питания, которые он создаёт. Если в помещении есть оборудование, чувствительное к электромагнитным помехам, то, конечно, нужно выбирать трансформаторную конструкцию.
Вот мы и выяснили, что такое блок питания и для чего служит. Каких типов и видов бывают и чем отличаются друг от друга. Теперь мы без проблем подберём БП для своих целей.
⇡#Блок активного PFC
В цепи переменного тока с линейной нагрузкой (как, например, лампа накаливания или электроплитка) протекающий ток следует такой же синусоиде, как и напряжение. Но это не так в случае с устройствами, имеющими входной выпрямитель, – такими как импульсные БП. Блок питания пропускает ток короткими импульсами, примерно совпадающими по времени с пиками синусоиды напряжения (то есть максимальным мгновенным напряжением), когда подзаряжается сглаживающий конденсатор выпрямителя.
Потребление тока импульсным БП
Сигнал тока искаженной формы раскладывается на несколько гармонических колебаний в сумме с синусоидой данной амплитуды (идеальным сигналом, который имел бы место при линейной нагрузке).
Мощность, используемая для совершения полезной работы (которой, собственно, является нагрев компонентов ПК), указана в характеристиках БП и называется активной. Остальная мощность, порождаемая гармоническими колебаниями тока, называется реактивной. Она не производит полезной работы, но нагревает провода и создает нагрузку на трансформаторы и прочее силовое оборудование.
Векторная сумма реактивной и активной мощности называется полной мощностью (apparent power). А отношение активной мощности к полной называется коэффициентом мощности (power factor) – не путать с КПД!
У импульсного БП коэффициент мощности изначально довольно низкий – около 0,7. Для частного потребителя реактивная мощность не составляет проблемы (благо она не учитывается электросчетчиками), если только он не пользуется ИБП. На бесперебойник как раз таки ложится полная мощность нагрузки. В масштабе офиса или городской сети избыточная реактивная мощность, создаваемая импульсными БП уже значительно снижает качество электроснабжения и вызывает расходы, поэтому с ней активно борются.
Электрическая схема и потребление тока блоком Active PFC
В частности, подавляющее большинство компьютерных БП оснащаются схемами активной коррекции фактора мощности (Active PFC). Блок с активным PFC легко опознать по единственному крупному конденсатору и дросселю, установленным после выпрямителя. В сущности, Active PFC является еще одним импульсным преобразователем, который поддерживает на конденсаторе постоянный заряд напряжением около 400 В. При этом ток из питающей сети потребляется короткими импульсами, ширина которых подобрана таким образом, чтобы сигнал аппроксимировался синусоидой – что и требуется для имитации линейной нагрузки. Для синхронизации сигнала потребления тока с синусоидой напряжения в контроллере PFC имеется специальная логика.
Схема активного PFC содержит один или два ключевых транзистора и мощный диод, которые размещаются на одном радиаторе с ключевыми транзисторами основного преобразователя БП. Как правило, ШИМ-контроллер ключа основного преобразователя и ключа Active PFC являются одной микросхемой (PWM/PFC Combo).
Коэффициент мощности у импульсных блоков питания с активным PFC достигает 0,95 и выше. Кроме того, у них есть одно дополнительное преимущество – не требуется переключатель сети 110/230 В и соответствующий удвоитель напряжения внутри БП. Большинство схем PFC переваривают напряжения от 85 до 265 В. Кроме того, снижается чувствительность БП к кратковременным провалам напряжения.
Кстати, помимо активной коррекции PFC, существует и пассивная, которая подразумевает установку дросселя большой индуктивности последовательно с нагрузкой. Эффективность ее невелика, и в современном БП вы такое вряд ли найдете.
Цифровой лабораторный блок питания из модулей с Алиэкспресс
Рассмотренные преобразователи позволяют собрать простой лабораторный блок питания, который вполне способен работать в мастерской по ремонту или у радиолюбителя. Но если вы хотите больше полезных функций, простое и наглядное управление, то обратите своё внимание на преобразователи напряжения ЖК-дисплеем и цифровым управлением. Такие модульные преобразователи можно купить на Алиэкспресс.
Импульсный преобразователь MDP-XP
По сути, устройство является готовым блоком питания с регулировкой по току и напряжению, а в этот раздел оно попало лишь потому, что выполнено в виде отдельных модулей и с возможностью наращивания архитектуры подключением дополнительных компонентов.
Импульсный преобразователь MDP-XP с микропроцессорным управлением
Один из модулей является, собственно, преобразователь, и он может работать самостоятельно. Второй – модуль управления, расширяющий возможности первого модуля и обеспечивающий дополнительные удобства. Предлагаем посмотреть подробное видео об этом преобразователе и как с ним работать.
Модуль питания MDP-P905
Настройка прибора производится при помощи трех кнопок, валкодера и дисплея. На дисплее можно увидеть информацию по входному и выходному напряжению, току, отдаваемой мощности и температуре платы преобразователя. Этот же дисплей используется для установки величины тока и напряжения. Также имеется два входа для подачи входного напряжения, порт USB для программирования (он же для питания модуля управления) и два гнезда для подключения выходного кабеля. Назначение разъемов и органов управления изображено на фото ниже.
Модуль управления MDP-M01
Этот блок, как было отмечено выше, расширяет функционал модуля питания. При необходимости к нему можно подключить до шести таких модулей для независимой или совместной работы.
Модуль управления MDP-M01
С MDP-XP блок соединяется по беспроводному каналу. Единственное, что он требует для работы, – напряжение 5 В, которое можно получить от любого соответствующего адаптера с USB-разъёмом или подключив его к MDP-XP соответствующим кабелем (идет в комплекте). Ну и конечно, MDP-M01 нужно запрограммировать, скачав файл с сайта производителя и установив связь с модулем питания по беспроводному каналу.
Управление устройством и подключенными к нему модулями питания осуществляется при помощи пяти функциональных кнопок и двух поворотных ручек. Графический цветной дисплей служит для отображения входного и выходного текущих токов и напряжений, потребляемой мощности, отданного количества энергии, предустановленных величин U и I. Дополнительно на этом же дисплее мы можем увидеть график, на котором отображается напряжение питания нагрузки и потребляемый ею ток.
Вариант отображения информации на дисплее
В комплекте с устройством идет кабель для подключения к выходу преобразователя и сопряжения модуля питания с модулем управления. Блок питания в комплект не входит.
Комплект, как мы убедились, неплохой. Огорчает лишь одно – даже в минимальной конфигурации он стоит немалых денег. Ну а кто все же решится, может приобрести его тут.
Набор DPS5020-USB-BT для сборки лабораторного блока питания
Набор хоть и не из дешевых, но имеет в комплекте все, необходимое для сборки мощного регулируемого лабораторного блока питания, включая многофункциональный дисплей и платы сопряжения с ПК по USB или Bluetooth (опция). Единственное, придется докупить или изготовить подходящих размеров корпус и импульсный блок питания AC/DC соответствующей мощности. Но об этом позже.
Импульсный регулируемый преобразователь DPS3012
Основные характеристики модуля импульсного преобразователя:
- Pвых. – до 1000 Вт;
- точность регулировки напряжения – 0.01 В;
- точность регулировки тока – 0.01 А.
Модуль оснащен одним гнездом, к которому можно подключить идущим в комплекте шлейфом (в комплекте) адаптер USB или Bluetooth в зависимости от того, какой узел необходим. Охлаждение силовых транзисторов, установленных на радиатор, принудительное.
Четырехстрочный цветной дисплей имеет встроенный контроллер, 3 кнопки управления и валкодер для установки напряжения, ограничения тока и мощности. Подключается к модулю преобразователя при помощи двух шлейфов (в комплекте). На дисплее можно увидеть величины входного и выходного напряжения, выходной ток, уровень срабатывания защиты и текущую выходную мощность.
Верхний диапазон измерений прибора – 30 В и 3 А. Для его расширения на импульсном преобразователе установлены шунты и добавочные резисторы.
Как можно увидеть из описания, для сборки лабораторного блока питания из этих модулей не понадобится даже паяльник. Все на колодках. Набор DPS5020-USB-BT можно найти по этой ссылке.
Теперь о корпусе. Его, конечно, можно изготовить самостоятельно, но на том же Алике можно найти еще один набор, в который входит корпус, дополнительный вентилятор охлаждения с преобразователем 12 В для его питания, гнезда для подключения нагрузки и внешнего источника питания, выключатель, провода, наконечники и крепежные винты.
Ну и несколько фото процесса сборки.
Вентилятор и плата его питания установлены
Лабораторный блок питания практически собран
Импульсный преобразователь с дисплеем DP50V5A
Преобразователь с дисплеем DP50V5A
Основные характеристики этого устройства следующие:
Подключение такого устройства не составит труда – 2 винтовые клеммы, расположенные сзади дисплея, промаркированы:
- +IN – плюс Uвх.;
- -IN – минус Uвх.;
- +OUT – плюс Uвых.;
- -OUT – минус Uвых.
Подключение модуля к источнику постоянного напряжения и нагрузки упрощает маркировка
Купить такое устройство можно, перейдя по этой ссылке:
Начнем с основ. Блок питания в компьютере выполняет три функции. Во-первых, переменный ток из бытовой сети электропитания нужно преобразовать в постоянный. Второй задачей БП является понижение напряжения 110-230 В, избыточного для компьютерной электроники, до стандартных значений, требуемых конвертерами питания отдельных компонентов ПК, – 12 В, 5 В и 3,3 В (а также отрицательные напряжения, о которых расскажем чуть позже). Наконец, БП играет роль стабилизатора напряжений.
Есть два основных типа источников питания, которые выполняют перечисленные функции, – линейный и импульсный. В основе простейшего линейного БП лежит трансформатор, на котором напряжение переменного тока понижается до требуемого значения, и затем ток выпрямляется диодным мостом.
Однако от БП требуется еще и стабилизация выходного напряжения, что обусловлено как нестабильностью напряжения в бытовой сети, так и падением напряжения в ответ на увеличение тока в нагрузке.
Чтобы компенсировать падение напряжения, в линейном БП параметры трансформатора рассчитываются так, чтобы обеспечить избыточную мощность. Тогда при высоком токе в нагрузке будет наблюдаться требуемый вольтаж. Однако и повышенное напряжение, которое возникнет без каких-либо средств компенсации при низком токе в полезной нагрузке, тоже неприемлемо. Избыточное напряжение устраняется за счет включения в цепь неполезной нагрузки. В простейшем случае таковой является резистор или транзистор, подключенный через стабилитрон (Zener diode). В более продвинутом – транзистор управляется микросхемой с компаратором. Как бы то ни было, избыточная мощность просто рассеивается в виде тепла, что отрицательно сказывается на КПД устройства.
Пример линейного источника питания со стабилизатором. Избыточная мощность рассеивается на транзисторе Q1
В схеме импульсного БП возникает еще одна переменная, от которой зависит напряжение на выходе, в дополнение к двум уже имеющимся: напряжению на входе и сопротивлению нагрузки. Последовательно с нагрузкой стоит ключ (которым в интересующем нас случае является транзистор), управляемый микроконтроллером в режиме широтно-импульсной модуляции (ШИМ). Чем выше длительность открытых состояний транзистора по отношению к их периоду (этот параметр называется duty cycle, в русскоязычной терминологии используется обратная величина – скважность), тем выше напряжение на выходе. Из-за наличия ключа импульсный БП также называется Switched-Mode Power Supply (SMPS).
Через закрытый транзистор ток не идет, а сопротивление открытого транзистора в идеале пренебрежимо мало. В действительности открытый транзистор обладает сопротивлением и рассеивает какую-то часть мощности в виде тепла. Кроме того, переход между состояниями транзистора не идеально дискретный. И все же КПД импульсного источника тока может превышать 90%, в то время как КПД линейного БП со стабилизатором в лучшем случае достигает 50%.
Простейшая схема импульсного преобразователя AC/DC с трансформатором
Другое преимущество импульсных источников питания состоит в радикальном уменьшении габаритов и массы трансформатора по сравнению с линейными БП такой же мощности. Известно, что чем выше частота переменного тока в первичной обмотке трансформатора, тем меньше необходимый размер сердечника и число витков обмотки. Поэтому ключевой транзистор в цепи размещают не после, а до трансформатора и, помимо стабилизации напряжения используют для получения переменного тока высокой частоты (для компьютерных БП это от 30 до 100 кГц и выше, а как правило – около 60 кГц). Трансформатор, работающий на частоте электросети 50-60 Гц, для мощности, требуемой стандартным компьютером, был бы в десятки раз массивнее.
Линейные БП сегодня применяются главным образом в случае маломощных устройств, когда относительно сложная электроника, необходимая для импульсного источника питания, составляет более чувствительную статью расходов в сравнении с трансформатором. Это, к примеру, блоки питания на 9 В, которые используются для гитарных педалей эффектов, а когда-то – для игровых приставок и пр. А вот зарядники для смартфонов уже сплошь импульсные – тут расходы оправданны. Благодаря существенно меньшей амплитуде пульсаций напряжения на выходе линейные БП также применяются в тех областях, где это качество востребованно.
Простые схемы
Начнем с самых простых схем, собрать которые сможет даже начинающий радиотехник. Но несмотря на простоту и ограниченный функционал, они вполне годятся для питания во время отладки большинства конструкций самостоятельной сборки.
Трансформаторный регулируемый блок питания с симисторным регулятором
Предлагаемый БП довольно прост в изготовлении и позволяет получить постоянное напряжение величиной от 4 до 25 В. Принцип регулирования – фазоимпульсный. Выходной ток зависит от мощности трансформатора и при указанных на схеме элементах может достигать 10 А.
Схема с симисторной регулировкой напряжения
Рассмотрим работу устройства более подробно. Сетевое напряжение подается на первичную обмотку трансформатора Т1 через симистор VS1. Сразу после включения БП симистор закрыт, ток через обмотку трансформатора не течет. При появлении положительной полуволны конденсатор С2 начинает заряжаться через резистор R3 и диод VD1 моста VD1-VD4. Как только напряжение на нем достигнет 160 В, зажжется неоновая лампа HL1 и конденсатор разрядится через управляющий электрод симистора, одновременно открывая его. При этом на сетевую обмотку Т1 начнет поступать напряжение. По окончании полуволны симистор закрывается.
Одновременно этот же резистор через диод VD3 моста подключается параллельно первичной обмотке трансформатора Т1. Сделано это для того, чтобы симистор после короткого открывающего импульса сразу же не закрылся. Ведь он работает на реактивную нагрузку, ток через которую достигнет значения удержания симистором не сразу.
При появлении отрицательной полуволны процесс повторяется, но конденсатор теперь заряжается напряжением обратной полярности через резистор R5 и диод VD2 моста. Соответственно, при зажигании лампы HL1 к управляющему электроду прикладывается напряжение другой полярности, открывая симистор в обратном направлении. Во время этой фазы параллельно сетевой обмотке подключается резистор R5 через диод VD4.
Время зарядки конденсатора зависит от положения движка переменного резистора R1. Таким образом, при каждой полуволне симистор будет открываться с той или иной задержкой, отсекая передний ее фронт. Чем большая часть полуволны будет отсечена, тем меньшее действующее напряжение будет на первичной, а значит, и на вторичной обмотке сетевого трансформатора. Диоды VD3 и VD4 подключают резисторы.
На месте Т1 может работать любой силовой трансформатор с выходным напряжением 28-30 В. От мощности трансформатора, как было замечено выше, будет зависеть максимальный выходной ток БП. Диоды Д226 можно заменить на любые выпрямительные, рассчитанные на ток не менее 200 мА и напряжение не менее 300 В. Конденсаторы С1, С2 неполярные. КУ208Г можно заменить на КУ208В. Вместо диодов Д245 подойдут любые из серий Д242, Д245, КД213, КД210, Д243, выдерживающие обратное напряжение 50 В и ток 10 А. Конденсатор С5 керамический неполярный.
Диоды VD5-VD8 и симистор VS1 необходимо установить на радиаторы с площадью рассеяния не менее 100 см2 каждый. Если радиатор общий, то элементы придется устанавливать через изолирующие прокладки. При этом площадь рассеяния такого радиатора должна быть соответственно увеличена.
Настройка блока питания сводится к установке необходимого диапазона регулировки напряжения подстроечным резистором R2. Если устройство работает нестабильно (это будет заметно по провалам в свечении лампы HL1 и нестабильному выходному напряжению), то можно попробовать уменьшить номинал резистора R4 до 150 Ом.
Меняем симистор на тиристор
Если в вашем распоряжении не оказалось симистора, можно обойтись обычным тиристором, немного изменив схему его включения.
Схема регулируемого блока питания с тиристором
Поскольку тиристор не может работать в цепи переменного тока, он питает первичную обмотку трансформатора Тr1 через диодный мост. Схема фазоимпульсного управления представляет собой аналог однопереходного транзистора, собранного на Т1, Т2. Питается схема от простейшего параметрического стабилизатора, состоящего из мощного стабилитрона D1 и токоограничивающего резистора R1.
При появлении полуволны начинается зарядка конденсатора С1. Скорость зарядки можно регулировать при помощи переменного резистора P1. Как только напряжение на конденсаторе достигнет определенного уровня, откроется аналог однопереходного транзистора и разрядит конденсатор через управляющий электрод тиристора VS1. Последний откроется, закоротит диодный мост, который в свою очередь подаст на обмотку Тr1 переменное напряжение. По окончании полуволны тиристор закроется. В начале следующей полуволны процесс повторится.
Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.
Таким образом, при каждой полуволне тиристор будет открываться с той или иной задержкой, отсекая передний ее фронт. Чем большая часть полуволны будет отсечена, тем меньшее действующее напряжение будет на первичной, а значит, и на вторичной обмотке сетевого трансформатора.
На месте VD1-VD4 могут работать любые высоковольтные выпрямительные диоды, выдерживающие ток более 3 А и обратное напряжение не менее 300 В. КТ605 можно заменить на КТ809А, КТ629, КТ935 или MJE340. Вместо КТ361 можно поставить КТ361Е, КТ502Г, КТ502В, КТ3107А, КТ501Ж – KT501K. Тиристор КУ202Н заменим на КУ202М. Конденсатор С1 неполярный. Стабилитрон D1 любой на напряжение стабилизации 14-24 В, выдерживающий ток 1 А. Остальные элементы такие же, что и в предыдущей схеме. Диоды обоих мостов и тиристор установлены на радиаторы.
Универсальные схемы регуляторов напряжения и тока на линейных регуляторах LMxxx для любого блока питания
Для сборки регулируемых блоков питания своими руками очень удобно использовать интегральные стабилизаторы напряжения серии LMххх (отечественный аналог КР142ЕНхх). Рассмотрим несколько схем регулировки напряжения и тока на этих микросхемах.
Линейный регулятор напряжения
Схема узла регулировки напряжения
Поскольку микросхема относительно маломощная (максимальный ток 1.5 А), в качестве силового ключа в конструкцию добавлен мощный транзистор Т1. Регулировка производится при помощи переменного резистора P1. Вместо транзистора КТ819АМ можно использовать приборы этой же серии с буквами БМ-ГМ. Отечественный аналог LM317 – КР142ЕН12А. Конденсатор С3 керамический. Транзистор Т1 и микросхема DD1 устанавливаются на радиаторы с площадью рассеивания не менее 100 см2 каждый. Схема довольно простая и может быть выполнена навесным монтажом, но для тех, кто любит делать все “по уму”, приведем печатную плату стабилизатора.
Печатная плата регулятора
Регулятор тока
Этот регулятор тоже использует интегральный стабилизатор напряжения LM317, но включенный по схеме стабилизации тока.
Схема узла регулировки тока
В регуляторе можно использовать любые пятнадцатиамперные диоды, выдерживающие обратное напряжение 50 В, КТ818АМ можно заменить на полупроводник той же серии с буквами БМ-ГМ. Конденсатор С3 керамический. Отечественный аналог LM317 – КР142ЕН12А. Резистор R2 должен иметь мощность не менее 10 Вт. Его можно изготовить из обмоточного провода диаметром 0.8-1 мм, взяв кусок необходимой длины. Транзистор VT1 и диоды D1, D2 необходимо установить на радиаторы. Если радиатор общий, то элементы необходимо установить через изолирующие прокладки.
Если необходимо снизить верхний порог регулировки тока, то сопротивление резистора R2 нужно уменьшить. Рассчитать номинал резистора можно по формуле: I = 1.2/R, где I – необходимый максимальный ток в амперах, R – сопротивление резистора R2 в омах.
Экономичный регулятор – стабилизатор тока
Рассмотренная выше схема, нужно признать, не самая удачная. На токоизмерительном резисторе и диодах D1, D2 бесполезно рассеивается приличная мощность. Массогабаритные показатели узла из-за этих же элементов оставляют желать лучшего.
Схема регулятора тока на LM358
Сердцем регулятора-стабилизатора является операционный усилитель LM358, управляющий ключом на мощном полевом транзисторе Т1. Резисторы R1, R2, R3 совместно со стабилитроном D1 представляют собой генератор опорного напряжения, регулировка тока производится при помощи переменного резистора R3. Резистор R5 токоизмерительный. Он выполнен из отрезка обмоточного провода диаметром 0.5-0.8 мм.
На место T1 можно установить транзистор STP55NF06, стабилитрон 1N4734A заменим на любой маломощный с напряжением стабилизации 5.6 В. Отечественные аналоги микросхемы LM358 – КР1401УД5, КР1053УД2, КР1040УД1. Транзистор Т1 должен быть установлен на радиатор с площадью рассеивания не менее 100 см2.
⇡#Входной выпрямитель
После фильтра переменный ток преобразуется в постоянный с помощью диодного моста – как правило, в виде сборки в общем корпусе. Отдельный радиатор для охлаждения моста всячески приветствуется. Мост, собранный из четырех дискретных диодов, – атрибут дешевых блоков питания. Можно также поинтересоваться, на какой ток рассчитан мост, чтобы определить, соответствует ли он мощности самого БП. Хотя по этому параметру, как правило, имеется хороший запас.
Использование импульсных преобразователей
До этого мы строили блоки питания на дискретных элементах, но для этого можно использовать готовые модули. В интернете можно найти все что угодно, а стоит это «что угодно», как правило, недорого. Для работы таких преобразователей на вход нужно подать постоянное напряжение, подойдет любой блок питания с соответствующим выходным напряжением (12-24-36 вольт), например, от ноутбука, или несколько блоков питания для светодиодной ленты одинаковой мощности, соединённых последовательно.
Для начала рассмотрим несколько наиболее популярных преобразователей DC/DC, которые можно использовать для построения лабораторных блоков питания.
Понижающий импульсный преобразователь XL4016
Несмотря на относительно невысокую стоимость, этот преобразователь обладает неплохими характеристиками:
- Iвх. макс. – 10 А;
- P вых. макс. – 300 Вт (при принудительном охлаждении);
- I холостого хода – 25 мА;
- защита от КЗ и перегрева – есть.
Ток и напряжение плавно регулируются при помощи подстроечных многооборотных резисторов, которые в лабораторном БП лучше заменить на потенциометры.
Модуль импульсного преобразователя с регулировкой тока и напряжения XL4016
Схема включения модуля довольно простая и осуществляется при помощи винтовой колодки с четырьмя клеммами. На первые две клеммы подаем входное напряжение, соблюдая полярность, с двух других снимаем ток и напряжение, заданные подстроечными резисторами.
Существует модификация этого преобразователя, имеющая выходную мощность 80 Вт (Iвых. макс. – 8 А). Внешне она выглядит практически так же, но стоит в полтора раза дешевле и не имеет защиты от КЗ и переполюсовки/перегрева. В остальном эта модификация ничем не отличается от предыдущей.
Импульсный понижающий преобразователь XL4016 мощностью 80 Вт
Повышающий импульсный преобразователь XL4016
Несмотря на то же «имя» и внешнее сходство этот преобразователь имеет существенное отличие от двух предыдущих. Во-первых, он позволяет регулировать только выходное напряжение, причем в гораздо более узком диапазоне. Во-вторых, он повышающий. То есть с его помощью можно получить выходное напряжение выше, чем входное.
Повышающий импульсный преобразователь XL4016
Остальные характеристики модуля следующие:
- Iвх. макс. – 10 А;
- P вых. макс. – 150 Вт (при принудительном охлаждении);
- I холостого хода – 25 мА;
- защита от КЗ и переполюсовки – нет.
Приобрести модули XL4016 всех вышеперечисленных модификаций можно на Алиэкспресс. Стоимость – от $3 до $4.
DC to DC Step Down Buck Converter 5V-30V to 0. 8V-29V 5A
Импульсный регулируемый преобразователь со встроенным вольтамперметром
Как видно из фото, блок состоит из двух модулей – регулировок и измерения. При помощи первого мы регулируем параметры выходного напряжения, второй представляет собой цифровой вольтамперметр с возможностью передачи данных на ПК по интерфейсу RX-TX.
Модуль регулировок (слева) и модуль отображения информации
Стоит такое удовольствие $5.85, а приобрести его можно здесь. Схема подключения модуля предельно проста. На вход подаем питание, с выхода снимаем то, что желаем, устанавливая параметры при помощи подстроечных резисторов. Для подключения устройства к ПК служит трехконтактный разъем на плате дисплея. Распиновка его указана ниже. Двухконтактный разъем не используется.
Для оперативной регулировки напряжения и тока подстроечные резисторы (оба номиналом 10 кОм) стоит заменить на переменные, расположив их на лицевой панели блока питания.
Импульсный преобразователь CN4015-3
Этот понижающий преобразователь менее мощный, чем предыдущая модель, но имеет встроенный цифровой дисплей и тоже позволяет регулировать ток и напряжение.
Модуль преобразователя со встроенным однострочным дисплеем
Основные характеристики этого модуля следующие:
- Pвых. – 75 Вт;
- защита от КЗ и перегрева – есть.
Поскольку дисплей однострочный, он используется для отображения величины как напряжения, так и тока. Для переключения режима служит механическая кнопка. Не совсем удобно, но вполне приемлемо. Дополнительно на этот же индикатор можно вывести значение величины входного напряжения. Есть режим калибровки амперметра и вольтметра по контрольным приборам.
Также устройство оснащено портом USB для зарядки гаджетов и светодиодной индикацией режимов – наличие входного/выходного напряжений, режим стабилизации и пр. Со схемой подключения и назначением органов управления/индикации можно познакомиться на рисунке, приведенном ниже.
Схема подключения и назначение органов управления и индикации
Приобрести этот преобразователь можно на Алиэкспресс за $4, перейдя по этой ссылке.
Напряжение на порте USB соответствует установленному выходному напряжению, а не фиксированным 5 В. С одной стороны, это позволяет производить ускоренную зарядку, с другой, можно запросто сжечь гаджет, рассчитанный не более чем на 5 В.
Импульсный преобразователь повышенной мощности
Этот модуль может обеспечить ток до 20 А, обладает расширенным диапазоном регулировки напряжения, и им мы закончим наш небольшой обзор импульсных преобразователей DC/DC с регулировкой по выходу. Устройство позволяет плавно регулировать ток и напряжение, имеет защиту от КЗ, перегрева и перегрузки.
Взглянем на основные характеристики модуля:
- Pвых. – 300 Вт;
- защита от КЗ – есть (самовосстановление, не держит длительной перегрузки).
Модуль имеет светодиодную индикацию работы и переключатель, отключающий выходное напряжение. Схема включения преобразователя и назначение органов управления приведены ниже, а сам модуль можно приобрести за $3.3 на все том же Алиэкспресс.
Инструкция по переделке компьютерного блока питания в лабораторный
Любой БП от компьютера – практически готовый мощный и надежный лабораторный блок питания. Единственное, чего ему не хватает, – регулировки напряжения и тока. Но для того, кто читает схемы и умеет держать в руках паяльник, это не проблема. К примеру, переделка компьютерного БП ATX, собранного на ШИМ-контроллере TL494 или его аналоге, будет выглядеть следующим образом:
Отключаем узел стабилизации выходного напряжения. Для этого выпаиваем два резистора, которые соединяют вывод 1 микросхемы ШИМ-контроллера с шинами +12 и +5 В. На приведенном ниже фото отключение делается путем перекусывания перемычки.
Эту перемычку удаляем
Отключаем защиту от перенапряжения. Тут есть два варианта:
- Выпаиваем диод, отвечающий за узел защиты.
- Отрезаем 4 ножку микросхемы ШИМ-контроллера и подключаем ее к общей шине питания.
Используем первый вариант
Меняем конденсаторы. Выпаиваем все сглаживающие конденсаторы по линиям +12, -12, +5, -5, +3,3 В. По шине +12 В устанавливаем конденсаторы той же емкости, что и стояли, но на рабочее напряжение не ниже 35 В.
Теперь наш БП выдает напряжение порядка 28 В (по бывшей шине +12 В), можно двигаться дальше. Собираем простенькую схему регулировки тока и напряжения.
Предлагаемая доработка требует сборки дополнительного блока регулировок. Но сделать регулируемый блок питания можно гораздо проще, добавив в схему самого компьютерного БП несколько переменных резисторов и конденсаторов. Как сделать регулируемый блок питания из БП от компьютера с минимальными затратами времени, сил и средств, подскажет статья «Как сделать блок питания или зарядное устройство из компьютерного БП ATX».
На этом беседу о лабораторных блоках питания можно закончить. Как вы убедились, схем подобных конструкций великое множество, причем самой разной сложности. Выбор же конкретного варианта будет зависеть только от ваших умения и желания.
Лабораторный блок питания с регулировкой напряжения и ограничением по току
Ну а теперь попробуем из вышеприведенных узлов собрать блок питания, при помощи которого можно регулировать выходное напряжение и устанавливать ограничение по току. При этом и напряжение, и установленный ток будут стабилизированными.
Лабораторный блок питания с регулировкой напряжения и тока
Сетевое напряжение понижается до 25 В силовым трансформатором Тr1, выпрямляется диодным мостом VD1-VD4, сглаживается конденсатором С1 и поступает на регулируемый стабилизатор, собранный на микросхеме DD1 и транзисторе Т1. Регулировка производится переменным резистором P1.
Далее напряжение установленной нами величины подается на регулятор-стабилизатор тока (микросхема DD2, транзистор Т2). Регулировка величины тока производится переменным резистором P2. Более подробно оба эти узла описаны выше. Поскольку микросхема LM358 не может работать при напряжении питания ниже 7 В, она и генератор опорной частоты (стабилитрон D1) подключены непосредственно к выходу выпрямителя.
Таким образом, мы можем выставить необходимое нам напряжение и установить ток, выше которого блок питания не выдаст даже при коротком замыкании. Это позволит обезопасить отлаживаемую самоделку при ошибках в монтаже и случайных замыканиях во время ее регулировки.
В конструкции можно использовать любой сетевой трансформатор соответствующей мощности со вторичной обмоткой на 25-28 В. Диоды VD1-VD4 можно заменить на любые выпрямительные, рассчитанные на ток не менее 10 А и выдерживающие обратное напряжение не менее 40 В. Их, как и силовые транзисторы T1, T2, необходимо установить на радиаторы.
Схема на транзисторах
Несмотря на богатый выбор микросхем самого различного назначения блоки питания на транзисторах не теряют популярности. Попробуем и мы построить лабораторный БП на этих полупроводниковых приборах.
Схема лабораторного блока питания на транзисторах
Регулятор тока собран на транзисторах Т3, Т4 и стабилитроне D2, исполняющем роль источника опорного напряжения. В качестве токоизмерительного элемента используется сам полевой транзистор T4. Если падение напряжения на нем превысит определенный порог, транзистор Т3 начнет открываться и шунтировать Т4, заставляя его закрываться и ограничивать ток через нагрузку. Регулировка порога ограничения производится переменным резистором P2.
В схеме вместо диодной сборки KBPC2510 можно использовать отдельные диоды, выдерживающие ток 10 А и обратное напряжение не менее 30 В. Подойдут, к примеру, Д245, Д242. На месте Т1 может работать КТ805 или КТ819, Т2 заменяем на КТ867А. КТ315 можно заменить на КТ315Б-Д, КТ3102А, КТ312Б, КТ503В-Г, П307. Отечественный аналог TL431 — КР142ЕН19А. Диодный мост, Т1, Т2 и Т4 нужно установить на радиаторы.
Запитать устройство можно от любого сетевого трансформатора с выходным напряжением 20-25 В, способного обеспечить ток в нагрузке не менее 15 А.
⇡#Методика тестирования блоков питания
Одним из основных параметров БП является стабильность напряжений, которая находит отражение в т.н. кросс-нагрузочной характеристике. КНХ представляет собой диаграмму, в которой на одной оси отложен ток или мощность на шине 12 В, а на другой – совокупный ток или мощность на шинах 3,3 и 5 В. В точках пересечения при разных значениях обеих переменных определяется отклонение напряжения от номинала на той или иной шине. Соответственно, мы публикуем две разные КНХ – для шины 12 В и для шины 5/3,3 В.
Цвет точки означает процент отклонения:
Для получения КНХ используется сделанный на заказ стенд для тестирования блоков питания, который создает нагрузку за счет рассеивания тепла на мощных полевых транзисторах.
Стенд для тестирования БП
Другой не менее важный тест – определение размаха пульсаций на выходе БП. Стандарт ATX допускает пульсации в пределах 120 мВ для шины 12 В и 50 мВ – для шины 5 В. Различают высокочастотные пульсации (на удвоенной частоте ключа основного преобразователя) и низкочастотные (на удвоенной частоте питающей сети).
Этот параметр мы измеряем при помощи USB-осциллографа Hantek DSO-6022BE при максимальной нагрузке на БП, заданной спецификациями. На осциллограмме ниже зеленый график соответствует шине 12 В, желтый – 5 В. Видно, что пульсации находятся в пределах нормы, и даже с запасом.
Для сравнения приводим картину пульсаций на выходе БП старого компьютера. Этот блок изначально не был выдающимся, но явно не стал лучше от времени. Судя по размаху низкочастотных пульсаций (обратите внимание, что деление развертки напряжения увеличено до 50 мВ, чтобы колебания поместились на экран), сглаживающий конденсатор на входе уже пришел в негодность. Высокочастотные пульсации на шине 5 В находятся на грани допустимых 50 мВ.
Высокочастотные пульсации: на грани допустимого (старый БП)
Низкочастотные пульсации: ужасно (старый БП)
В следующем тесте определяется КПД блока при нагрузке от 10 до 100% от номинальной мощности (путем сравнения мощности на выходе с мощностью на входе, измеренной при помощи бытового ваттметра). Для сравнения на графике приводятся критерии различных категорий 80 PLUS. Впрочем, большого интереса в наши дни это не вызывает. На графике приведены результаты топового БП Corsair в сравнении с весьма дешевым Antec, а разница не то чтобы очень велика.
Более насущный для пользователя вопрос – шум от встроенного вентилятора. Непосредственно измерить его вблизи от ревущего стенда для тестирования БП невозможно, поэтому мы измеряем скорость вращения крыльчатки лазерным тахометром – также при мощности от 10 до 100%. На нижеприведенном графике видно, что при низкой нагрузке на этот БП 135-миллиметровый вентилятор сохраняет низкие обороты и вряд ли слышен вообще. При максимальной нагрузке шум уже можно различить, но уровень все еще вполне приемлемый.
Если Вы заметили ошибку — выделите ее мышью и нажмите CTRL+ENTER.
⇡#Фильтр ЭМП
Фильтр на входе БП служит для подавления двух типов электромагнитных помех: дифференциальных (differential-mode) – когда ток помехи течет в разные стороны в линиях питания, и синфазных (common-mode) – когда ток течет в одном направлении.
Дифференциальные помехи подавляются конденсатором CX (крупный желтый пленочный конденсатор на фото выше), включенным параллельно нагрузке. Иногда на каждый провод дополнительно вешают дроссель, выполняющий ту же функцию (нет на схеме).
Фильтр синфазных помех образован конденсаторами CY (синие каплевидные керамические конденсаторы на фото), в общей точке соединяющими линии питания с землей, и т.н. синфазным дросселем (common-mode choke, LF1 на схеме), ток в двух обмотках которого течет в одном направлении, что создает сопротивление для синфазных помех.
Схема фильтра электромагнитных помех
В дешевых моделях устанавливают минимальный набор деталей фильтра, в более дорогих описанные схемы образуют повторяющиеся (полностью или частично) звенья. В прошлом нередко встречались БП вообще без фильтра ЭМП. Сейчас это скорее курьезное исключение, хотя, покупая совсем дешевый БП, можно, все-таки нарваться на такой сюрприз. В результате будет страдать не только и не столько сам компьютер, сколько другая техника, включенная в бытовую сеть, – импульсные БП являются мощным источником помех.
В районе фильтра хорошего БП можно обнаружить несколько деталей, защищающих от повреждения само устройство либо его владельца. Почти всегда есть простейший плавкий предохранитель для защиты от короткого замыкания (F1 на схеме). Отметим, что при срабатывании предохранителя защищаемым объектом является уже не блок питания. Если произошло КЗ, то, значит, уже пробило ключевые транзисторы, и важно хотя бы предотвратить возгорание электропроводки. Если в БП вдруг сгорел предохранитель, то менять его на новый, скорее всего, уже бессмысленно.
Отдельно выполняется защита от кратковременных скачков напряжения с помощью варистора (MOV – Metal Oxide Varistor). А вот никаких средств защиты от длительного повышения напряжения в компьютерных БП нет. Эту функцию выполняют внешние стабилизаторы со своим трансформатором внутри.
Конденсатор в цепи PFC после выпрямителя может сохранять значительный заряд после отключения от питания. Чтобы беспечного человека, сунувшего палец в разъем питания, не ударило током, между проводами устанавливают разряжающий резистор большого номинала (bleeder resistor). В более изощренном варианте – вместе с управляющей схемой, которая не дает заряду утекать при работе устройства.
Кстати, наличие фильтра в блоке питания ПК (а в БП монитора и практически любой компьютерной техники он тоже есть) означает, что покупать отдельный «сетевой фильтр» вместо обычного удлинителя, в общем-то, без толку. У него внутри все то же самое. Единственное условие в любом случае – нормальная трехконтактная проводка с заземлением. В противном случае конденсаторы CY, соединенные с землей, просто не смогут выполнять свою функцию.
⇡#Дежурное питание +5VSB
Описание компонентов блока питания было бы неполным без упоминания об источнике дежурного напряжения 5 В, который делает возможным спящий режим ПК и обеспечивает работу всех устройств, которые должны быть включены постоянно. «Дежурка» питается от отдельного импульсного преобразователя с маломощным трансформатором. В некоторых БП встречается и третий трансформатор, использующийся в цепи обратной связи для изоляции ШИМ-контроллера от первичной цепи основного преобразователя. В других случаях эту функцию выполняют оптопары (светодиод и фототранзистор в одном корпусе).
Трансформаторы (Corsair HX750i)