Как изменить направление прокрутки мыши и сенсорных панелей в Windows 10

Smd резисторы – виды, параметры и характеристики

Резистор – это элемент, обладающий каким-либо сопротивлением, применяется в электронике и электротехнике для ограничения тока или получения необходимых напряжений (например, использование резистивного делителя). SMD-резисторы – это резисторы для поверхностного монтажа, иначе говоря – монтажа на поверхность печатной платы.

Основные характеристики для резисторов – это номинальное сопротивление, измеряется в Омах и зависит от толщины, длины и материалов резистивного слоя, а также рассеиваемая мощность.

Электронные компоненты для поверхностного монтажа отличаются малыми габаритами за счет того, что у них либо отсутствуют выводы для подключения в классическом понимании. У элементов для объемного монтажа есть длинные выводы.

SMD резисторы

Ранее при сборке РЭА ими соединяли компоненты цепи между собой (навесной монтаж) или продевали их через печатную плату в соответствующие отверстия. Конструктивно выводы или контакты у них выполнены в вид металлизированных площадок на корпусе элементов. В случае же микросхем и транзисторов поверхностного монтажа у элементов присутствуют короткие жесткие «ножки».

Одной из основных характеристик SMD-резисторов является и типоразмер. Это величина длины и ширины корпуса, по этим параметрам подбирают элементы, соответствующие разводке платы. Обычно размеры в документации пишутся сокращенно четырёхзначным числом, где первые две цифры указывают длину элемента в мм, а вторая пара символов – ширину в мм. Однако, фактически, размеры могут отличаться от маркировки в зависимости от типов и серии элементов.

Типовые размеры SMD-резисторов и их параметры

Типовые размеры SMD-резисторов

 Рисунок 1 – обозначения для расшифровки типоразмеров.

1. SMD-резисторы 0201:

L=0.6 мм; W=0.3 мм; H=0.23 мм; L1=0.13 м.

  • Диапазон номинальных значений: 0 Ом, 1 Ом — 30 МОм

  • Допустимое отклонение от номинала: 1% (F); 5% (J)

  • Номинальная мощность: 0,05 Вт

  • Рабочее напряжение: 15 В

  • Максимально допустимое напряжение: 50 В

  • Рабочий диапазон температур: –55 — 125 °С

2. SMD-резисторы 0402:

L=1.0 мм; W=0.5 мм; H=0.35 мм; L1=0.25 мм.

  • Диапазон номинальных значений: 0 Ом, 1 Ом — 30 МОм

  • Допустимое отклонение от номинала: 1% (F); 5% (J)

  • Номинальная мощность: 0,062 Вт

  • Рабочее напряжение: 50 В

  • Максимально допустимое напряжение: 100 В

  • Рабочий диапазон температур: –55 — 125 °С

3. SMD-резисторы 0603:

L=1.6 мм; W=0.8 мм; H=0.45 мм; L1=0.3 мм.

  • Диапазон номинальных значений: 0 Ом, 1 Ом — 30 МОм

  • Допустимое отклонение от номинала: 1% (F); 5% (J)

  • Номинальная мощность: 0,1 Вт

  • Рабочее напряжение: 50 В

  • Максимально допустимое напряжение: 100 В

  • Рабочий диапазон температур: –55 — 125 °С

4. SMD-резисторы 0805:

L=2.0 мм; W=1.2 мм; H=0.4 мм; L1=0.4 мм.

  • Диапазон номинальных значений: 0 Ом, 1 Ом — 30 МОм

  • Допустимое отклонение от номинала: 1% (F); 5% (J)

  • Номинальная мощность: 0,125 Вт

  • Рабочее напряжение: 150 В

  • Максимально допустимое напряжение: 200 В

  • Рабочий диапазон температур: –55 — 125 °С

5. SMD-резисторы 1206:

L=3.2 мм; W=1.6 мм; H=0.5 мм; L1=0.5 мм.

  • Диапазон номинальных значений: 0 Ом, 1 Ом — 30 МОм

  • Допустимое отклонение от номинала: 1% (F); 5% (J)

  • Номинальная мощность: 0,25 Вт

  • Рабочее напряжение: 200 В

  • Максимально допустимое напряжение: 400 В

  • Рабочий диапазон температур: –55 — 125 °С

6. SMD-резисторы 2021:

L=5.0 мм; W=2.5 мм; H=0.55 мм; L1=0.5 мм.

  • Диапазон номинальных значений: 0 Ом, 1 Ом — 30 МОм

  • Допустимое отклонение от номинала: 1% (F); 5% (J)

  • Номинальная мощность: 0,75 Вт

  • Рабочее напряжение: 200 В

  • Максимально допустимое напряжение: 400 В

  • Рабочий диапазон температур: –55 — 125 °С

7. SMD-резисторы 2512:

L=6.35 мм; W=3.2 мм; H=0.55 мм; L1=0.5 мм.

  • Диапазон номинальных значений: 0 Ом, 1 Ом — 30 МОм

  • Допустимое отклонение от номинала: 1% (F); 5% (J)

  • Номинальная мощность: 1 Вт

  • Рабочее напряжение: 200 В

  • Максимально допустимое напряжение: 400 В

  • Рабочий диапазон температур: –55 — 125 °С

Как вы можете видеть, с увеличением размеров чип-резистора увеличивается и номинальная рассеиваемая мощность в таблице ниже нагляднее приведена эта зависимость, а также геометрические размеры резисторов других типов:

Таблица 1 – Маркировка SMD-резисторов

Маркировка SMD-резисторов

В зависимости от размеров может применяться один из трёх видов маркировки номинала резистора. Выделяют три вида маркировки:

1. С помощью 3-х цифр. При этом первые две обозначают количество ом, а последняя количество нулей. Так маркируют резисторы из ряда Е-24, c отклонением от номинала (допуском) в 1 или 5%. Типоразмер резисторов с такой маркировкой – 0603, 0805 и 1206. Пример такой маркировки: 101 = 100 = 100 Ом

Изображение SMD-резистора с номиналом в 10 000 Ом, он же 10 кОм

 Рисунок 2 – изображение SMD-резистора с номиналом в 10 000 Ом, он же 10 кОм.

 2. С помощью 4-х символов. В этом случае 3 первых цифры обозначают количество Ом, а последняя – количество нулей. Так описываются резисторы из ряда Е-96 типоразмеров 0805, 1206. Если в маркировке присутствует буква R – она играет роль запятой, отделяющей целые от долей. Таким образом маркировка 4402 расшифровывается как 44 000 Ом или 44 кОм.

Изображение SMD-резистора с номиналом в 44 кОма

 Рисунок 3 – изображение SMD-резистора с номиналом в 44 кОма

3. Маркировка комбинацией из 3 символов – цифр и букв. При этом 2 первых знака – это цифры, обозначают закодированное значение сопротивления в Омах. Третий символ – это множитель. Таким способом маркируются резисторы типоразмера 0603 из ряда сопротивлений Е-96, с допуском 1%. Перевод букв во множитель выполняется по ряду: S=10^-2; R=10^-1; B=10; C=10^2; D=10^3; E=104; F=10^5.

Расшифровка кодов (первых двух символов) ведется по таблице, изображенной ниже.

Таблица 2 – расшифровка кодов маркировки SMD-резисторов

Расшифровка кодов маркировки SMD-резисторовРезистор с трёхсимвольной маркировкой 10С

Рисунок 4 – резистор с трёхсимвольной маркировкой 10С, если воспользоваться таблицей и приведенным рядом множителей, то 10 – это 124 Ома, а С – это множитель 10^2, что равняется 12 400 Ома или 12.4 кОм.

Основные параметры резисторов

У идеального резистора учитывают только его активное сопротивление. В реальности же дело обстоит иначе – у резисторов есть и паразитные индуктивно-емкостные составляющие. Ниже приведен один из вариантов эквивалентной схемы резистора:

Эквивалентная схема резистора

 Рисунок 5 – Эквивалентная схема резистора

Как можно увидеть на схеме присутствуют и емкости (конденсаторы) и индуктивность. Их наличие связано с тем, что у каждого проводника есть определенная индуктивность, а у группы проводников – паразитная ёмкость. У резистора же они связаны с расположением его резистивного слоя и его конструкцией.

:/>  Как установить живые обои на Рабочий стол для Windows 10: как сделать гифку

Эти параметры в цепях постоянного тока и низкочастотных цепях обычно не учитывают, но они могут внести существенное влияние в высокочастотных радиопередающих схемах и в импульсных блоках питания, где протекают токи частотами в десятки-сотни кГц. В таких цепях любая паразитная составляющая, в плоть до неправильной разводки проводящих дорожек печатной платы, может сделать невозможной её работу.

Итак, индуктивность и емкость – это элементы, которые оказывают влияние на полное сопротивление и фронты токов и напряжений в зависимости от частоты. Наилучшим по частотным характеристикам являют элементы для поверхностного монтажа, благодаря как раз-таки их малым размерам.

На графике изображено отношение полного сопротивления резистора к активному на различных частотах

Рисунок 6 – На графике изображено отношение полного сопротивления резистора к активному на различных частотах

В полное сопротивление входит и активное сопротивление, и реактивные сопротивления паразитной индуктивностио и емкости. На графике можно наблюдать падение полного сопротивления с ростом частоты.

Конструкция резистора

Резисторы поверхностного монтажа дешевы и удобны при конвеерной автоматизированной сборке электронных устройств. Однако, они не так просты, как может показаться.

Внутреннее устройство SMD-резистора

Рисунок 7 – Внутреннее устройство SMD-резистора

Основой резистора является подложка из Al2O3 – окиси алюминия. Это хороший диэлектрик и материал с хорошей теплопроводностью, что не менее важно, так как в процессе работы вся мощность резистора выделяется в тепло.

В качестве резистивного слоя используется тонкая металлическая или оксидная пленка, например – хром, двуокись рутения (как изображено на рисунке выше). От материала из которого состоит эта пленка зависят характеристики резисторов. Резистивный слой отдельных резисторов представляет собой пленку толщиной до 10 мкм, из материала с низким ТКС (температурным коэффициентом сопротивления), что дает высокую температурную стабильность параметров и возможность создать высокопрецизионные элементы, пример такого материала – константан, однако номиналы таких резисторов редко превышают 100 Ом.

Контактные площадки резистора формируются из набора слоев. Внутренний контактный слой выполняют из дорогих материалов вроде серебра или палладия. Промежуточный – из никеля. А внешний – свинцово оловянный. Такая конструкция обусловлена необходимостью обеспечить высокую адгезию (связанность) слоев. От них зависит надежность контактов и шумы.

Для снижения паразитных составляющих приходят к следующим технологическим решении при формировании резистивного слоя:

Форма резистивного слоя

Рисунок 8 – форма резистивного слоя

Монтаж таких элементов происходит в печах, а в радиолюбительских мастерских с помощью паяльного фена, то есть потоком горячего воздуха. Поэтому при их изготовлении уделяется внимание температурной кривой нагрева и охлаждения.

Кривая нагрева и охлаждения при пайке SMD-резисторов

Рисунок 9 – кривая нагрева и охлаждения при пайке SMD-резисторов

Выводы

Использование компонентов поверхностного монтажа положительно сказалось на массогабаритных показателях радиоэлектронной аппаратуры, а также на частотных характеристиках элемента. Современная промышленность выпускает большую часть распространенных элементов в SMD-исполнении. В том числе: резисторы, конденсаторы, диоды, светодиоды, транзисторы, тиристоры, интегральные микросхемы.

Какие бывают стандарты маркировки

Маркировка smd резисторовМаркировка, которая наносится на корпус SMD-элементов, как правило, отличается от их фирменных названий. Причина банальная – нехватка места из-за миниатюрности корпуса. Проблема особенно актуальна для ЭРЭ, которые размещаются в корпусах с шестью и менее выводами.

Это миниатюрные диоды, транзисторы, стабилизаторы напряжения, усилители и т.д. Для разгадки “что есть что” требуется проводить настоящую экспертизу, ведь по одному маркировочному коду без дополнительной информации очень трудно идентифицировать тип ЭРЭ. С момента появления первых SMD-приборов прошло более 20 лет.

Несмотря на все попытки стандартизации, фирмы-изготовители до сих пор упорно изобретают все новые разновидности SMD-корпусов и бессистемно присваивают своим элементам маркировочные коды.

Полбеды, что наносимые символы даже близко не напоминают наименование ЭРЭ, – хуже всего, что имеются случаи “плагиата”, когда одинаковые коды присваивают функционально разным приборам разных фирм.

ТипНаименование ЭРЭЗарубежное название
A1Полевой N-канальный транзисторFeld-Effect Transistor (FET), N-Channel
A2Двухзатворный N-канальный полевой транзисторTetrode, Dual-Gate
A3Набор N-канальных полевых транзисторовDouble MOSFET Transistor Array
B1Полевой Р-канальный транзисторMOS, GaAs FET, P-Channel
D1Один диод широкого примененияGeneral Purpose, Switching, PIN-Diode
D2Два диода широкого примененияDual Diodes
D3Три диода широкого примененияTriple Diodes
D4Четыре диода широкого примененияBridge, Quad Diodes
E1Один импульсный диодRectifier Diode
E2Два импульсных диодаDual
E3Три импульсных диодаTriple
E4Четыре импульсных диодаQuad
F1Один диод ШотткиAF-, RF-Schottky Diode, Schottky Detector Diode
F2Два диода ШотткиDual
F3Три диода ШотткиTripple
F4Четыре диода ШотткиQuad
K1“Цифровой” транзистор NPNDigital Transistor NPN
K2Набор “цифровых” транзисторов NPNDouble Digital NPN Transistor Array
L1“Цифровой” транзистор PNPDigital Transistor PNP
L2Набор “цифровых” транзисторов PNPDouble Digital PNP Transistor Array
L3Набор “цифровых” транзисторов | PNP, NPNDouble Digital PNP-NPN Transistor Array
N1Биполярный НЧ транзистор NPN (f < 400 МГц)AF-Transistor NPN
N2Биполярный ВЧ транзистор NPN (f > 400 МГц)RF-Transistor NPN
N3Высоковольтный транзистор NPN (U > 150 В)High-Voltage Transistor NPN
N4“Супербета” транзистор NPN (г“21э > 1000)Darlington Transistor NPN
N5Набор транзисторов NPNDouble Transistor Array NPN
N6Малошумящий транзистор NPNLow-Noise Transistor NPN
01Операционный усилительSingle Operational Amplifier
02КомпараторSingle Differential Comparator
P1Биполярный НЧ транзистор PNP (f < 400 МГц)AF-Transistor PNP
P2Биполярный ВЧ транзистор PNP (f > 400 МГц)RF-Transistor PNP
P3Высоковольтный транзистор PNP (U > 150 В)High-Voltage Transisnor PNP
P4“Супербета” транзистор PNP (п21э > 1000)Darlington Transistor PNP
P5Набор транзисторов PNPDouble Transistor Array PNP
P6Набор транзисторов PNP, NPNDouble Transistor Array PNP-NPN
S1Один сапрессорTransient Voltage Suppressor (TVS)
S2Два сапрессораDual
T1Источник опорного напряжения“Bandgap”, 3-Terminal Voltage Reference
T2Стабилизатор напряженияVoltage Regulator
T3Детектор напряженияVoltage Detector
U1Усилитель на полевых транзисторахGaAs Microwave Monolithic Integrated Circuit (MMIC)
U2Усилитель биполярный NPNSi-MMIC NPN, Amplifier
U3Усилитель биполярный PNPSi-MMIC PNP, Amplifier
V1Один варикап (варактор)Tuning Diode, Varactor
V2Два варикапа (варактора)Dual
Z1Один стабилитронZener Diode
:/>  Чем открыть формат TTF? Программы для чтения TTF файлов

Лазерный тримминг резисторов.

Чтобы привести сопротивление резистивного слоя к заданному номиналу используется лазерная подгонка или на зарубежный манер, тримминг (trimming – “обрезка”). Суть её заключается в удалении части топологического рисунка из плёнки за счёт лазерного излучения.

На фото показан пример обрезки (L-Cut), сделанный с помощью лазерного тримминга (слева резистор на 33 Ома (330), справа на 1 МОм (105)).

Чтобы подобрать требуемую величину сопротивления резистора на поверхности резистивного слоя делают лазерный “надрез”. В зависимости от требуемых характеристик форма надреза может быть весьма оригинальной. Вот основные из них:

  • Поперечный i-рез (“Plunge Cut”). Самый “быстрый” и наименее точный подгоночный рез.

    Врезанный разрез. i-рез

  • L-рез (“L Cut”). Из его достоинств можно отметить малое среднеквадратичное отклонение Rs и высокую точность. Более медленный тип реза, по сравнению с поперечным i-резом.

    L-рез

    На фото показан L-рез на поверхности SMD-резистора типоразмера 2512 на 100 кОм (рядом для масштаба положена миллиметровая линейка). Скорее всего, это толстоплёночный резистор. Защитный слой мне удалось снять острым лезвием перочинного ножа.

    Лазерная обрезка при подгонке номинала SMD-резистора

    Кроме реза типа L, может применяться так называемый Opposing “L”, когда делается два L-реза по обоим сторонам плёнки.

    Противонаправленный L-рез - Opposing L-cut

  • “Серпантин” или “Змейка” (“Serpentine”). Можно встретить название “Меандр” (“Meandering”). Это “медленный” рез, но за счёт него обеспечивается самый большой прирост сопротивления.

    Рез "Серпантин" или "Змейка"

    Такой рез используется при изготовлении чип-резисторов мегаомных и гигаомных номиналов.

  • “Двойной поперечный рез” (“Double Plunge Cut”). Высокая точность и малое среднеквадратичное отклонение Rs.

    Двойной поперечный рез

  • “Vernier”. Очень похожий на предыдущий рез. Судя по всему, назван так из-за сходства со штангенциркулем (vernier caliper).

    Рез типа "Vernier"

  • “U-рез” (“U-Cut”). Применяется для изготовления высоковольтных резисторов с высокой долговременной стабильностью.

    U-рез

  • “П-рез” (“Plunge Cut: Top Hat Resistor”). Продольный “быстрый” рез, используемый для нормировки Top-Hat резисторов.

    П-рез для нормировки Top Hat резисторов

  • “Скан-рез” или Scrub. Также можно встретить название “Shave-рез”. Применяется для изготовления высоковольтных резисторов. Самый медленный, но наиболее точный и стабильный рез. Боковая часть плёнки удаляется лазером.

    Рез типа "Лезвие" или "Скан-рез"

    Также применяется симметричный скраб (“Symetrical Scrub”), когда часть резистивной плёнки удаляется с обеих сторон.

    Тип реза "Symetrical Scrub"

  • “Multiplunge”. Такой тип реза обеспечивает практически линейное изменение сопротивления. Используя “i-рез” создаются последовательные секции многосекционного резистора (резисторной SMD-сборки).

    Рез типа "Multiplunge"

  • Для подгонки многосекционного резистора “лестничного” типа может использоваться перерезка шунтирующих перемычек.

    Топология рисунка резистора "лестничного" типа

    На следующей картинке показан резистор “лестничного типа” (Ladder resistor), а также пример использования данной топологии в структуре резистивной плёнки.

    Пример использования топологии "лестничного" типа в тонкоплёночном резисторе

Если хорошенько присмотреться, то на поверхности толстоплёночных чип-резисторов иногда можно разглядеть разрезы, сделанные лазером. Они слегка проступают под внешним защитным покрытием.

Как видим, несмотря на кажущуюся простоту, для изготовления SMD-резисторов требуется высокоточное оборудование и строгое соблюдение технологии производства.

Стандартная настройка

Для начала открыв меню «Пуск» следует перейти в «Панель инструментов» , которая позволяет изменять параметры и функциональные возможности Вашего компьютера.

Перейдя в раздел, выбираем пункт «Мышь» .

Откроется окно со свойствами гаджета. В нем можно будет поменять назначение кнопок – эта функция предназначена для тех, у кого ведущая рука левая.

Стоит отметить, что левшам лучше приобретать , форма которых выполнена симметрично, тогда обмен будет удобен.

Также предоставляется возможность отрегулировать с помощью специальной шкалы скорость выполнения двойного щелчка, которая иногда выставлена совсем непривычно.

Свойства и выбор кнопок

Если перейти на следующие вкладки, то можно ознакомиться и с другими функциями. Так в «Указателях» можно изменить внешний вид «стрелочки» и полностью подстроить ее под себя.

Некоторые из вариантов обладают даже анимацией, а кроме этого можно снять или наоборот включить тень от курсора.

Позволят отладить скорость движения «стрелочки», а также предоставят несколько дополнительных возможностей: отображать след указателя, скрывать его во время набора текста и обозначать его при нажатии на клавишу Ctrl .

Вкладка Параметры указателя

Во вкладке «Колесико» легко разобраться с прокруткой страниц, так, чтобы она соответствовала желаниям пользователя.

Вертикальная является всем привычной, и она поможет вам более комфортно работать с текстовыми документами или же повысит удобство при времяпровождении за играми.

В свою очередь, горизонтальная прокрутка, как правило, присутствует не у всех.

Чаще всего применяется при просмотре , размер которых не всегда сопоставим с расширением экрана пользователя.

Вкладка Колесико

В «Оборудовании» указана вся доступная информация о подключенных гаджетах.

Раздел включает в себя отчет об их состоянии, драйверы, которые ими используются, а также некоторые справочные данные.

Помимо этого способа внести свои коррективы в работу гаджета, есть также иной, тоже начинающийся с перехода в «Панель управления» .

В ней выбираем , а после пункт «Изменение параметров мыши» .

Раздел Специальные возможности

В открытом окне видим набор самых оптимальных настроек, среди которых отдельным блоком выделены поправки, касающиеся цвета, размера и оттенка курсора.

Еще допускается включение управления указателем с и активация окна при наведении на него курсором.

Вкладка Облегчение работы с мышью

Эта информация поможет, если манипулятор не вмещает в себя дополнительных кнопок, его установки в этом случае предусмотрены центром обслуживания .

Но если ваш гаджет значительно отличается от других, то простым разбором свойств не обойтись.

Компьютерная мышка – один из самых важных инструментов, используемых для управления всей системой. От ее калибровки зачастую зависит удобство и быстрота работы за компьютером. Однако большинство пользователей не знает, как поменять эти значения. Ведь иногда необходимо вручную настроить мышку на Windows 10, особенно, ее чувствительность.

Юбилейная версия системы Microsoft Windows сильно отличается от предыдущих полностью перекроенным интерфейсом. Эти изменения сразу же бросаются в глаза. Однако если на первый взгляд разница не очень велика, то, присмотревшись, можно понять, что это две разные системы.

Только теперь те же характеристики мышки есть и в той, и в другой настроечной базе, а какую именно надо открывать, определяют конкретные требования пользователя. Таким образом, если необходимо изменить чувствительность прокрутки активного окна или сменить назначение клавиш, то надо обращаться именно к параметрам.

  1. Для этого на рабочем столе необходимо найти меню «Пуск».
  1. Пролистать список приложений в левой части меню (1) и найти там «Параметры». Затем нажать на него (2). Откроется окошко основных значений компьютера.
  1. Тут можно либо нажать на «Устройства» в средней части экрана, либо в строке поиска набрать «Мышь» (3) – откроется перечень всех упоминаний этого слова.
  1. В первом случае откроются списки устройств, в которых надо выбрать «Мышь и сенсорная панель». Во втором случае из списка нужно выбрать первый результат (4).
  1. В открывшейся папке можно изменить число «sensitivity» прокрутки активного окна, а именно – какое количество строк на экране будет прокручиваться при однократном повороте колесика. Для этого следует открыть список и выбрать пункт «На несколько строк за раз» (6). Количество регулируется шкалой с бегунком (7), где влево – меньшее строк за раз, а вправо – большее. Однако рекомендуется устанавливать небольшое значение – если увеличить его до предела, это может привести к пролистыванию текстов целыми страницами, а если уменьшить до предела – оно практически остановится.
:/>  Команды для командной строки Windows: список

Там же можно произвести инверсию клавиш – сделать основной не левую, а правую (5). Для этого требуется открыть выпадающий список и выбрать нужное положение. Данная функция пригодится левшам для более удобной работы.

Остальные характеристики разработчики посчитали более сложными и профессиональными, поэтому спрятали в «Панель управления».

Таблица кодов smd резисторов и их значений

Код smdЗначениеКод smdЗначениеКод smdЗначениеКод smdЗначение
R100.1 Ом1R01 Ом10010 Ом101100 Ом
R110.11 Ом1R11.1 Ом11011 Ом111110 Ом
R120.12 Ом1R21.2 Ом12012 Ом121120 Ом
R130.13 Ом1R31.3 Ом13013 Ом131130 Ом
R150.15 Ом1R51.5 Ом15015 Ом151150 Ом
R160.16 Ом1R61.6 Ом16016 Ом161160 Ом
R180.18 Ом1R81.8 Ом18018 Ом181180 Ом
R200.2 Ом2R02 Ом20020 Ом201200 Ом
R220.22 Ом2R22.2 Ом22022 Ом221220 Ом
R240.24 Ом2R42.4 Ом24024 Ом241240 Ом
R270.27 Ом2R72.7 Ом27027 Ом271270 Ом
R300.3 Ом3R03 Ом30030 Ом301300 Ом
R330.33 Ом3R33.3 Ом33033 Ом331330 Ом
R360.36 Ом3R63.6 Ом36036 Ом361360 Ом
R390.39 Ом3R93.9 Ом39039 Ом391390 Ом
R430.43 Ом4R34.3 Ом43043 Ом431430 Ом
R470.47 Ом4R74.7 Ом47047 Ом471470 Ом
R510.51 Ом5R15.1 Ом51051 Ом511510 Ом
R560.56 Ом5R65.6 Ом56056 Ом561560 Ом
R620.62 Ом6R26.2 Ом62062 Ом621620 Ом
R680.68 Ом6R86.8 Ом68068 Ом681680 Ом
R750.75 Ом7R57.5 Ом75075 Ом751750 Ом
R820.82 Ом8R28.2 Ом82082 Ом821820 Ом
R910.91 Ом9R19.1 Ом91091 Ом911910 Ом
Код smdЗначениеКод smdЗначениеКод smdЗначениеКод smdЗначение
1021 кОм10310 кОм104100 кОм1051 МОм
1121.1 кОм11311 кОм114110 кОм1151.1 МОм
1221.2 кОм12312 кОм124120 кОм1251.2 МОм
1321.3 кОм13313 кОм134130 кОм1351.3 МОм
1521.5 кОм15315 кОм154150 кОм1551.5 МОм
1621.6 кОм16316 кОм164160 кОм1651.6 МОм
1821.8 кОм18318 кОм184180 кОм1851.8 МОм
2022 кОм20320 кОм204200 кОм2052 МОм
2222.2 кОм22322 кОм224220 кОм2252.2 МОм
2422.4 кОм24324 кОм244240 кОм2452.4 МОм
2722.7 кОм27327 кОм274270 кОм2752.7 МОм
3023 кОм30330 кОм304300 кОм3053 МОм
3323.3 кОм33333 кОм334330 кОм3353.3 МОм
3623.6 кОм36336 кОм364360 кОм3653.6 МОм
3923.9 кОм39339 кОм394390 кОм3953.9 МОм
4324.3 кОм43343 кОм434430 кОм4354.3 МОм
4724.7 кОм47347 кОм474470 кОм4754.7 МОм
5125.1 кОм51351 кОм514510 кОм5155.1 МОм
5625.6 кОм56356 кОм564560 кОм5655.6 МОм
6226.2 кОм62362 кОм624620 кОм6256.2 МОм
6826.8 кОм68368 кОм684680 кОм6856.8 МОм
7527.5 кОм75375 кОм754750 кОм7557.5 МОм
8228.2 кОм82382 кОм824820 кОм8158.2 МОм
9129.1 кОм91391 кОм914910 кОм9159.1 МОм

Оставьте комментарий

Adblock
detector