Основные виды и размеры smd приборов
Корпуса компонентов для микроэлектроники, имеющие одинаковые номинальные значения, могут отличаться друг от друга габаритами. Их габариты определяются прежде всего по типовому размеру каждого. К примеру: резисторы обозначаются типовыми размеры от «0201» до «2512».
Another paragraph
Cras mattis consectetur purus sit amet fermentum. Cras justo odio, dapibus ac facilisis in, egestas eget quam. Morbi leo risus, porta ac consectetur ac, vestibulum at eros.
Praesent commodo cursus magna, vel scelerisque nisl consectetur et. Vivamus sagittis lacus vel augue laoreet rutrum faucibus dolor auctor.
Smd конденсаторы
Конденсаторы выполненные из керамики по размеру одинаковы с резисторами, что касается танталовых конденсаторов, то они определяются по своей, собственной шкале типовых размеров:
Танталовые конденсаторы | |||||
Типоразмер | L, мм (дюйм) | W, мм (дюйм) | T, мм (дюйм) | B, мм | A, мм |
A | 3.2 (0.126) | 1.6 (0.063) | 1.6 (0.063) | 1.2 | 0.8 |
B | 3.5 (0.138) | 2.8 (0.110) | 1.9 (0.075) | 2.2 | 0.8 |
C | 6.0 (0.236) | 3.2 (0.126) | 2.5 (0.098) | 2.2 | 1.3 |
D | 7.3 (0.287) | 4.3 (0.170) | 2.8 (0.110) | 2.4 | 1.3 |
E | 7.3 (0.287) | 4.3 (0.170) | 4.0 (0.158) | 2.4 | 1.2 |
Text in a modal
Duis mollis, est non commodo luctus, nisi erat porttitor ligula, eget lacinia odio sem. Praesent commodo cursus magna, vel scelerisque nisl consectetur et. Vivamus sagittis lacus vel augue laoreet rutrum faucibus dolor auctor.
Группа – 1
Микросхемы этой группы используются в тех случаях, когда необходимо преобразовать напряжение 5 или 3,3 вольта в более низкое напряжение ряда 3,3 – 2,5 – 1,8 – 1,2 вольта. Такие преобразователи часто применяются в приставках (тюнерах) для приема цифрового телевидения, планшетах, ноутбуках для формирования напряжений питания процессора, памяти, демодулятора и тюнера.
Назначение выводов для корпуса с пятью выводами (SOT23-5):
- IN — входное напряжение питания 2,5…5,5в.
- GND — земля, общий провод.
- EN – напряжение включения. При подаче напряжения на этот вывод микросхема включается, при соединении с землей — отключается.
- SW — выход для подключения дросселя.
- FB — напряжение обратной связи.
Корпус с шестью выводами (SOT23-6) бывает дополнен еще сигналом PG (Power Good) — высокий уровень напряжения на нем появляется после выхода микросхемы в рабочий режим.
Напряжение на выходе преобразователя зависит от соотношения номиналов резисторов R1, R2 и рассчитывается по формуле:
R1 = (Vout / 0.6 -1) • R2
здесь 0.6 – значение напряжения на входе FB (Vfb), в.
Конденсатор C2 служит для повышения стабильности генерации. Обычно он имеет емкость 22 пф, но некоторые производители им пренебрегают. Конденсаторы С1, С3 рекомендуется устанавливать емкостью от 4 до 10 мкф.
Маркировка DC/DC преобразователей в корпусе SOT23-5
Условные обозначения:
y – буква, код года изготовления
m – буква, код месяца изготовления
w – буква, код недели изготовления
a – буква, код места изготовления
p – буква, код партии
Маркировка DC/DC преобразователей в корпусе SOT23-6
Условные обозначения:
y – буква, код года изготовления
m – буква, код месяца изготовления
w – буква, код недели изготовления
a – буква, код места изготовления
p – буква, код партии
Группа – 2
Микросхемы этой группы используются в тех случаях, когда необходимо преобразовать напряжение 15 или 12 вольт в более низкое напряжение ряда 5,0 – 3,3 вольта. Такие преобразователи часто применяются в приставках (тюнерах) для приема цифрового телевидения с внешним блоком питания на 12 вольт, телевизорах, мониторах.
Для получения ряда более низких напряжений за этими микросхемами часто устанавливают микросхемы предыдущей группы.
Назначение выводов:
- IN — входное напряжение питания 4,5…16в. (Для некоторых типов до 40в.)
- GND — земля, общий провод.
- EN – напряжение включения. При подаче напряжения логической единицы на этот вывод микросхема включается, при соединении с землей — отключается.
- SW — выход для подключения дросселя.
- FB — напряжение обратной связи (0,6…0,8в).
- BST — вывод для подключения керамического конденсатора 0,1…1 мкф.
Напряжение на выходе преобразователя зависит от соотношения номиналов резисторов R1, R2 и рассчитывается по формуле:
R1 = (Vout / Vfb -1) • R2
здесь Vfb – значение напряжения на входе FB, в.
Значение Vfb указано в таблице для каждой микросхемы. При подборе аналога необходимо брать микросхему с тем же значением Vfb, иначе выходное напряжение сильно изменится. Это может повредить устройство.
Конденсатор C3 служит для повышения стабильности генерации. Обычно он имеет емкость 22 пф, но некоторые производители им пренебрегают. Конденсаторы С1, С4 рекомендуется устанавливать емкостью от 4 до 10 мкф. Резистор Re обычно 100 КОм.
Маркировка DC/DC преобразователей в корпусе SOT23-6
Условные обозначения:
y – буква, код года изготовления
m – буква, код месяца изготовления
w – буква, код недели изготовления
a – буква, код места изготовления
p – буква, код партии
Группа – 3
Микросхемы этой группы используются в тех случаях, когда необходимо преобразовать напряжение от 15 до 40 вольт в более низкое напряжение ряда 12,0 – 5,0 – 3,3 вольта. Такие преобразователи применяются в телевизорах, мониторах, автомобильной и бытовой технике.
Для получения ряда более низких напряжений за этими микросхемами часто устанавливают микросхемы первой группы.
Назначение выводов:
- IN — входное напряжение питания 4,8…25в. (Для некоторых типов до 50в.)
- GND — земля, общий провод.
- EN – напряжение включения. При подаче напряжения логической единицы на этот вывод микросхема включается, при соединении с землей — отключается.
- SW — выход для подключения дросселя.
- FB — напряжение обратной связи (0,6…0,8в).
- BST — вывод для подключения керамического конденсатора 0,1…1 мкф.
Напряжение на выходе преобразователя зависит от соотношения номиналов резисторов R3, R4 и рассчитывается по формуле:
R3 = (Vout / Vfb -1) • R4
здесь Vfb – значение напряжения на входе FB, в.
Значение Vfb указано в таблице для каждой микросхемы. При подборе аналога необходимо брать микросхему с тем же значением Vfb, иначе выходное напряжение сильно изменится. Это может повредить устройство.
Конденсатор C3 служит для повышения стабильности генерации. Обычно он имеет емкость 22 пф, но некоторые производители им пренебрегают. Конденсаторы С1, С4 рекомендуется устанавливать емкостью от 4 до 10 мкф.
Делитель R1, R2 устанавливается таким образом, чтобы напряжение на входе EN было 2..5 в.Маркировка DC/DC преобразователей в корпусе SOT23-6
Условные обозначения:
y – буква, код года изготовления
m – буква, код месяца изготовления
w – буква, код недели изготовления
a – буква, код места изготовления
p – буква, код партии
Группа – 4
Микросхемы этой группы используются в тех случаях, когда необходимо преобразовать напряжение 2,5 – 5,0 вольт в более высокое напряжение ряда 3,3 – 5,0 – 12,0 – 15,0 вольт. Такие преобразователи часто применяются в планшетах, модемах, мониторах и телевизорах, зарядных устройствах, электронных книгах с e-ink дисплеями, устройствах с батарейным питанием.
Специализированные повышающие преобразователи, применяемые для питания светодиодов подсветки экрана, рассматриваются здесь.
Назначение выводов:
- IN — входное напряжение питания 2,5…5в. (Для некоторых типов до 28в.)
- GND — земля, общий провод.
- EN – напряжение включения. При подаче напряжения логической единицы на этот вывод микросхема включается, при соединении с землей — отключается.
- SW — выход для подключения дросселя.
- FB — напряжение обратной связи (0,6…1,3в).
Напряжение на выходе преобразователя зависит от соотношения номиналов резисторов R1, R2 и рассчитывается по формуле:
R1 = (Vout / Vfb -1) • R2
здесь Vfb – значение напряжения на входе FB, в.
Значение Vfb указано в таблице для каждой микросхемы. При подборе аналога необходимо брать микросхему с тем же значением Vfb, иначе выходное напряжение сильно изменится. Это может повредить устройство.
Конденсатор C3 служит для повышения стабильности генерации. Обычно он имеет емкость 22 пф, но некоторые производители им пренебрегают. Конденсаторы С1, С4 рекомендуется устанавливать емкостью от 4 до 10 мкф.
Маркировка DC/DC преобразователей в корпусе SOT23-5
Условные обозначения:
y – буква, код года изготовления
m – буква, код месяца изготовления
w – буква, код недели изготовления
a – буква, код места изготовления
p – буква, код партии
Маркировка DC/DC преобразователей в корпусе SOT23-6
Условные обозначения:
y – буква, код года изготовления
m – буква, код месяца изготовления
w – буква, код недели изготовления
a – буква, код места изготовления
p – буква, код партии
Группа – 5
Микросхемы этой группы используются в тех случаях, когда необходимо преобразовать напряжение алкалиновой или литиевой батареи в более высокое напряжение ряда 3,3 – 5,0 – 12,0 вольт. Такие преобразователи часто применяются в планшетах, модемах, зарядных устройствах, электронных книгах с e-ink дисплеями, цепях подсветки LCD-экранов, устройствах с батарейным питанием.
Назначение выводов:
- IN — входное напряжение питания 1,0…5,5 в. (Для некоторых типов до 16в.)
- OUT — выходное напряжение.
- GND — земля, общий провод.
- EN – напряжение включения. При подаче напряжения логической единицы на этот вывод микросхема включается, при соединении с землей — отключается.
- SW — выход для подключения дросселя.
- FB — напряжение обратной связи (0,6…1,3в).
Напряжение на выходе преобразователя зависит от соотношения номиналов резисторов R1, R2 и рассчитывается по формуле:
R1 = (Vout / Vfb -1) • R2
здесь Vfb – значение напряжения на входе FB, в.
Значение Vfb указано в таблице для каждой микросхемы. При подборе аналога необходимо брать микросхему с тем же значением Vfb, иначе выходное напряжение сильно изменится. Это может повредить устройство.
Маркировка DC/DC преобразователей в корпусе SOT23-6
Условные обозначения:
y – буква, код года изготовления
m – буква, код месяца изготовления
w – буква, код недели изготовления
a – буква, код места изготовления
p – буква, код партии
Отличия между микросхемами в пределах группы сводится к разнице в рабочей частоте генерации, максимальной мощности, наличию или отсутствию защиты от короткого замыкания в нагрузке, максимально допустимому входному напряжению. Многие из них взаимозаменяемы.
Цоколевка (расположение) выводов у большинства микросхем первой группы унифицирована, что позволяет менять микросхемы в корпусе SOT23-5 на SOT23-6 и наоборот.
Если вы не нашли нужного кода, напишите в комментариях, и мы постараемся дополнить таблицу. Если вы знаете SMD-коды подобных микросхем, отсутствующие в таблице, пожалуйста, напишите об этом.
Если около микросхемы нет дросселя, то, возможно, перед вами линейный регулятор напряжения.
Группа смд корпусов по их названию
Название | Расшифровка | кол-во выводов |
SOT | small outline transistor | 3 |
SOD | small outline diode | 2 |
SOIC | small outline integrated circuit | >4, в две линии по бокам |
TSOP | thin outline package (тонкий SOIC) | >4, в две линии по бокам |
SSOP | усаженый SOIC | >4, в две линии по бокам |
TSSOP | тонкий усаженный SOIC | >4, в две линии по бокам |
QSOP | SOIC четвертного размера | >4, в две линии по бокам |
VSOP | QSOP ещё меньшего размера | >4, в две линии по бокам |
PLCC | ИС в пластиковом корпусе с выводами, загнутыми под корпус с виде буквы J | >4, в четыре линии по бокам |
CLCC | ИС в керамическом корпусе с выводами, загнутыми под корпус с виде буквы J | >4, в четыре линии по бокам |
QFP | квадратный плоский корпус | >4, в четыре линии по бокам |
LQFP | низкопрофильный QFP | >4, в четыре линии по бокам |
PQFP | пластиковый QFP | >4, в четыре линии по бокам |
CQFP | керамический QFP | >4, в четыре линии по бокам |
TQFP | тоньше QFP | >4, в четыре линии по бокам |
PQFN | силовой QFP без выводов с площадкой под радиатор | >4, в четыре линии по бокам |
BGA | Ball grid array. Массив шариков вместо выводов | массив выводов |
LFBGA | низкопрофильный FBGA | массив выводов |
CGA | корпус с входными и выходными выводами из тугоплавкого припоя | массив выводов |
CCGA | СGA в керамическом корпусе | массив выводов |
μBGA | микро BGA | массив выводов |
FCBGA | Flip-chip ball grid array. Массив шариков на подложке, к которой припаян кристалл с теплоотводом | массив выводов |
LLP | безвыводной корпус |
Все это большое разнообразие электронных элементов обычному радиолюбителю может и не потребоваться, но знать о них нужно, мало ли что. Для паяльщика, который творит у себя дома, вполне может хватить перечня из основных деталей, которыми обычно пользуются все радиолюбители.
Диоды и стабилитроны в корпусе smd
Что касается диодов, то они также выпускаются в корпусах как цилиндрической формы так и в виде многогранника. Типовые размеры у этих компонентов задаются идентично индуктивным катушкам, сопротивлениям и конденсаторам.
Диоды, стабилитроны, конденсаторы, резисторы | |||||
Тип корпуса | L* (мм) | D* (мм) | F* (мм) | S* (мм) | Примечание |
DO-213AA (SOD80) | 3.5 | 1.65 | 048 | 0.03 | JEDEC |
DO-213AB (MELF) | 5.0 | 2.52 | 0.48 | 0.03 | JEDEC |
DO-213AC | 3.45 | 1.4 | 0.42 | — | JEDEC |
ERD03LL | 1.6 | 1.0 | 0.2 | 0.05 | PANASONIC |
ER021L | 2.0 | 1.25 | 0.3 | 0.07 | PANASONIC |
ERSM | 5.9 | 2.2 | 0.6 | 0.15 | PANASONIC, ГОСТ Р1-11 |
MELF | 5.0 | 2.5 | 0.5 | 0.1 | CENTS |
SOD80 (miniMELF) | 3.5 | 1.6 | 0.3 | 0.075 | PHILIPS |
SOD80C | 3.6 | 1.52 | 0.3 | 0.075 | PHILIPS |
SOD87 | 3.5 | 2.05 | 0.3 | 0.075 | PHILIPS |
Зарубежная маркировка smd
В таблице ниже обобщена информация о маркировочных кодах полупроводниковых приборов ведущих зарубежных фирм. Для компактности в настоящий справочный материал не включены приборы-двойники, имеющие одинаковую маркировку и одинаковое название, но производимые разными изготовителями. Например, транзистор BFR93A выпускается не только фирмой Siemens, но и Philips Semiconductors, и Temic Telefunken.
Среди 18 представленных типов корпусов наиболее часто встречается SOT-23 – Small Outline Transistor. Он имеет почтенный возраст и пережил несколько попыток стандартизации.
Выше были приведены нормы конструктивных допусков, которыми руководствуются разные фирмы. Несмотря на рекомендации МЭК, JEDEC, EIAJ, двух абсолютно одинаковых типоразмеров в табл.1 найти невозможно.
Интересно почитать: что такое биполярные транзисторы.
Приводимые сведения будут подспорьем специалистам, ремонтирующим импортную радиоаппаратуру. Зная маркировочный код и размеры ЭРЭ, можно определить тип элемента и фирму-изготовитель, а затем по каталогам найти электрические параметры и подобрать возможную замену.
Кроме того, многие фирмы используют свои собственные названия корпуса. Следует отметить, что отечественные типы корпусов, такие как КТ-46 – это аналог SOT-23, KT-47 – это аналог SOT-89, КТ-48 – это аналог SOT-143, были гостированы еще в 1988 году.
Выпущенные за это время несколько десятков разновидностей отечественных SMD-элементов маркируют, как правило, только на упаковочной таре, транзисторы КТ3130А9 – еще и разноцветными метками на корпусе. Самые “свежие” типы корпусов – это SOT-23/5 (или, по-другому, SOT-23-5) и SOT-89/5 (SOT-89-5), где цифра “5” указывает на количество выводов.
Зачем нужна маркировка
Современному радиолюбителю сейчас доступны не только обычные компоненты с выводами, но и такие маленькие, темненькие, на которых не понять что написано, детали. Они называются “SMD”. По-русски это значит “компоненты поверхностного монтажа”. Их главное преимущество в том, что они позволяют промышленности собирать платы с помощью роботов, которые с огромной скоростью расставляют SMD-компоненты по своим местам на печатных платах, а затем массово “запекают” и на выходе получают смонтированные печатные платы. На долю человека остаются те операции, которые робот не может выполнить. Пока не может.
Какие бывают стандарты маркировки
Маркировка, которая наносится на корпус SMD-элементов, как правило, отличается от их фирменных названий. Причина банальная – нехватка места из-за миниатюрности корпуса. Проблема особенно актуальна для ЭРЭ, которые размещаются в корпусах с шестью и менее выводами.
Это миниатюрные диоды, транзисторы, стабилизаторы напряжения, усилители и т.д. Для разгадки “что есть что” требуется проводить настоящую экспертизу, ведь по одному маркировочному коду без дополнительной информации очень трудно идентифицировать тип ЭРЭ. С момента появления первых SMD-приборов прошло более 20 лет.
Несмотря на все попытки стандартизации, фирмы-изготовители до сих пор упорно изобретают все новые разновидности SMD-корпусов и бессистемно присваивают своим элементам маркировочные коды.
Материал в тему: прозвон транзистора своими руками.
Полбеды, что наносимые символы даже близко не напоминают наименование ЭРЭ, – хуже всего, что имеются случаи “плагиата”, когда одинаковые коды присваивают функционально разным приборам разных фирм.
Тип | Наименование ЭРЭ | Зарубежное название |
A1 | Полевой N-канальный транзистор | Feld-Effect Transistor (FET), N-Channel |
A2 | Двухзатворный N-канальный полевой транзистор | Tetrode, Dual-Gate |
A3 | Набор N-канальных полевых транзисторов | Double MOSFET Transistor Array |
B1 | Полевой Р-канальный транзистор | MOS, GaAs FET, P-Channel |
D1 | Один диод широкого применения | General Purpose, Switching, PIN-Diode |
D2 | Два диода широкого применения | Dual Diodes |
D3 | Три диода широкого применения | Triple Diodes |
D4 | Четыре диода широкого применения | Bridge, Quad Diodes |
E1 | Один импульсный диод | Rectifier Diode |
E2 | Два импульсных диода | Dual |
E3 | Три импульсных диода | Triple |
E4 | Четыре импульсных диода | Quad |
F1 | Один диод Шоттки | AF-, RF-Schottky Diode, Schottky Detector Diode |
F2 | Два диода Шоттки | Dual |
F3 | Три диода Шоттки | Tripple |
F4 | Четыре диода Шоттки | Quad |
K1 | “Цифровой” транзистор NPN | Digital Transistor NPN |
K2 | Набор “цифровых” транзисторов NPN | Double Digital NPN Transistor Array |
L1 | “Цифровой” транзистор PNP | Digital Transistor PNP |
L2 | Набор “цифровых” транзисторов PNP | Double Digital PNP Transistor Array |
L3 | Набор “цифровых” транзисторов | PNP, NPN | Double Digital PNP-NPN Transistor Array |
N1 | Биполярный НЧ транзистор NPN (f < 400 МГц) | AF-Transistor NPN |
N2 | Биполярный ВЧ транзистор NPN (f > 400 МГц) | RF-Transistor NPN |
N3 | Высоковольтный транзистор NPN (U > 150 В) | High-Voltage Transistor NPN |
N4 | “Супербета” транзистор NPN (г“21э > 1000) | Darlington Transistor NPN |
N5 | Набор транзисторов NPN | Double Transistor Array NPN |
N6 | Малошумящий транзистор NPN | Low-Noise Transistor NPN |
01 | Операционный усилитель | Single Operational Amplifier |
02 | Компаратор | Single Differential Comparator |
P1 | Биполярный НЧ транзистор PNP (f < 400 МГц) | AF-Transistor PNP |
P2 | Биполярный ВЧ транзистор PNP (f > 400 МГц) | RF-Transistor PNP |
P3 | Высоковольтный транзистор PNP (U > 150 В) | High-Voltage Transisnor PNP |
P4 | “Супербета” транзистор PNP (п21э > 1000) | Darlington Transistor PNP |
P5 | Набор транзисторов PNP | Double Transistor Array PNP |
P6 | Набор транзисторов PNP, NPN | Double Transistor Array PNP-NPN |
S1 | Один сапрессор | Transient Voltage Suppressor (TVS) |
S2 | Два сапрессора | Dual |
T1 | Источник опорного напряжения | “Bandgap”, 3-Terminal Voltage Reference |
T2 | Стабилизатор напряжения | Voltage Regulator |
T3 | Детектор напряжения | Voltage Detector |
U1 | Усилитель на полевых транзисторах | GaAs Microwave Monolithic Integrated Circuit (MMIC) |
U2 | Усилитель биполярный NPN | Si-MMIC NPN, Amplifier |
U3 | Усилитель биполярный PNP | Si-MMIC PNP, Amplifier |
V1 | Один варикап (варактор) | Tuning Diode, Varactor |
V2 | Два варикапа (варактора) | Dual |
Z1 | Один стабилитрон | Zener Diode |
Катушки индуктивности и дроссели smd
Индуктивные катушки могут быть выполнены в различных конфигурациях корпуса, но их значение индицируется также, исходя из типоразмеров. Такой принцип маркировки SMD и расшифровки кодовых обозначений, дает возможность значительно упростить монтаж элементов на плате в автоматическом режиме, а радиолюбителю свободнее ориентироваться.
[adsens1]Моточные компоненты, такие как катушки, трансформаторы и прочие, которые мы в большинстве случаев изготавливаем собственноручно, могут просто не уместится на плате. Поэтому такие изделия, также выпускаются в компактном исполнении, которые можно установить на плату.
Определить какая именно катушка требуется вашему проекту, лучше всего воспользоваться каталогом и там подобрать требующийся вариант по типовому размеру. Типовые размеры, определяют с использованием кодового обозначения маркированного 4 числами (0805).
Кодовые обозначения и маркировка smd компонентов для поверхностного монтажа
Сейчас промышленность выпускает большое количество миниатюрных элементов для поверхностного монтажа электронных схем. Корпуса таких приборов, также могут различаться как по форме так и по размеру, а также по окраске. Есть радиодетали с выводами и без выводов, есть маленькие и совсем маленькие, но при этом все они имеют свои кодовые обозначения. Однако, маркировка SMD компонентов непосвященному радиолюбителю ничего не скажет.
Корпуса и smd маркировка
Так как разновидностей таких приборов великое множество, их принято условно делить на несколько групп, исходя из количества контактных выводов на них и габаритов корпуса:
выводы/размер | Очень-очень маленькие | Очень маленькие | Маленькие | Средние |
2 вывода | SOD962 (DSN0603-2), WLCSP2*, SOD882 (DFN1106-2), SOD882D (DFN1106D-2), SOD523, SOD1608 (DFN1608D-2) | SOD323, SOD328 | SOD123F, SOD123W | SOD128 |
3 вывода | SOT883B (DFN1006B-3), SOT883, SOT663, SOT416 | SOT323, SOT1061 (DFN2020-3) | SOT23 | SOT89, DPAK (TO-252), D2PAK (TO-263), D3PAK (TO-268) |
4-5 выводов | WLCSP4*, SOT1194, WLCSP5*, SOT665 | SOT353 | SOT143B, SOT753 | SOT223, POWER-SO8 |
6-8 выводов | SOT1202, SOT891, SOT886, SOT666, WLCSP6* | SOT363, SOT1220 (DFN2020MD-6), SOT1118 (DFN2020-6) | SOT457, SOT505 | SOT873-1 (DFN3333-8), SOT96 |
> 8 выводов | WLCSP9*, SOT1157 (DFN17-12-8), SOT983 (DFN1714U-8) | WLCSP16*, SOT1178 (DFN2110-9), WLCSP24* | SOT1176 (DFN2510A-10), SOT1158 (DFN2512-12), SOT1156 (DFN2521-12) | SOT552, SOT617 (DFN5050-32), SOT510 |
Естественно, в эту таблицу невозможно уместить данные о всех существующих корпусов, так как выполнить такое просто не реально. Разработка и производство новых и модифицированных SMD компонентов не стоит на месте, поэтому периодически появляются новые геометрически видоизмененные корпуса с индивидуальной маркировкой, и занести их одномоментно в реестр, не предоставляется возможным.
Электронные приборы помещенные в корпус SMD, в зависимости от размеров и назначения имеют контактные выводы, но также есть и без выводов. В случае отсутствия на корпусе привычных нам выводов, то их функции выполняет контактная площадка, как правило расположенная в торце корпуса. Например: микросхемы типа BGA, используемые в микроэлектронике, содержат на корпусе множество небольших капелек припоя.
Кроме этого, детали для поверхностного монтажа, могут отличаются от других производителей как размерами по высоте или ширине, так и SMD маркировка может быть другой, то есть кодовыми обозначениями.
В подавляющем большинстве корпуса SMD деталей созданы для установки на печатную плату технологического оборудования выполняющего монтаж в автоматическом режиме. Конечно, простые радиолюбители такую технику для работы в домашних условиях никогда не смогут приобрести.
[adsens]Да она в принципе и не нужна для дома, для этого есть другая аппаратура, не менее эффективная, но только для работы в домашней мастерской. Как бы там не было, но наши умельцы научились перепаивать BGA микросхемы своими силами и средствами, например: так называемой “перекаткой” шариков микросхемы.
Маркировка smd компонентов
SMD компоненты все чаще используются в промышленных и бытовых устройствах. Поверхностный монтаж улучшил производительность по сравнению с обычным монтажом, так как уменьшились размеры компонентов, а следовательно и размеры дорожек. Все эти факторы снизили паразитические индуктивности и емкости в электрических цепях.
Код | Сопротивление |
101 | 100 Ом |
471 | 470 Ом |
102 | 1 кОм |
122 | 1.2 кОм |
103 | 10 кОм |
123 | 12 кОм |
104 | 100 кОм |
124 | 120 кОм |
474 | 470 кОм |
Полезная информация: как проверить транзистор с помощью мультимера.
Маркировка smd компонентов — резисторы
Прямоугольные чип-резисторы и керамические конденсаторы | |||||
Типоразмер | L, мм (дюйм) | W, мм (дюйм) | H, мм (дюйм) | A, мм | Вт |
0201 | 0.6 (0.02) | 0.3 (0.01) | 0.23 (0.01) | 0.13 | 1/20 |
0402 | 1.0 (0.04) | 0.5 (0.01) | 0.35 (0.014) | 0.25 | 1/16 |
0603 | 1.6 (0.06) | 0.8 (0.03) | 0.45 (0.018) | 0.3 | 1/10 |
0805 | 2.0 (0.08) | 1.2 (0.05) | 0.4 (0.018) | 0.4 | 1/8 |
1206 | 3.2 (0.12) | 1.6 (0.06) | 0.5 (0.022) | 0.5 | 1/4 |
1210 | 5.0 (0.12) | 2.5 (0.10) | 0.55 (0.022) | 0.5 | 1/2 |
1218 | 5.0 (0.12) | 2.5 (0.18) | 0.55 (0.022) | 0.5 | 1 |
2021 | 5.0 (0.20) | 2.5 (0.10) | 0.55 (0.024) | 0.5 | 3/4 |
2512 | 6.35 (0.25) | 3.2 (0.12) | 0.55 (0.024) | 0.5 | 1 |
Цилиндрические чип-резисторы и диоды | |||||
Типоразмер | Ø, мм (дюйм) | L, мм (дюйм) | Вт | ||
0102 | 1.1 (0.01) | 2.2 (0.02) | 1/4 | ||
0204 | 1.4 (0.02) | 3.6 (0.04) | 1/2 | ||
0207 | 2.2 (0.02) | 5.8 (0.07) | 1 |
Маркировка smd резисторов
SMD резисторы с допусками 5% и 2% маркируются следующим кодом из трех символов:
Сопротивление | Код |
0 Ом (перемычка) | 000 |
от 1 Ома до 9.1 Ома | XRX (например 9R1) |
от 10 Ом до 91 Ома | XXR (например 91R) |
A — первая цифра в значении сопротивления резистора
B — вторая цифра в значении сопротивления резистора
С — количество нулей
Код | Сопротивление |
101 | 100 Ом |
471 | 470 Ом |
102 | 1 кОм |
122 | 1.2 кОм |
103 | 10 кОм |
123 | 12 кОм |
104 | 100 кОм |
124 | 120 кОм |
474 | 470 кОм |
SMD резисторы с допуском 1% маркируются четырьмя символами.
Сопротивление | Код |
от 100 Ом до 988 Ом | XXXR |
от 1 кОм до 1 МОм | XXXX |
A — первая цифра в значении сопротивления резистора
B — вторая цифра в значении сопротивления резистора
С — третья цифра в значении сопротивления резистора
D — количество нулей
Код | Сопротивление |
100R | 100 Ом |
634R | 634 Ома |
909R | 909 Ом |
1001 | 1 кОм |
4701 | 4.7 кОм |
1002 | 10 кОм |
1502 | 15 кОм |
5493 | 549 кОм |
1004 | 1 мОм |
Маркировка SMD конденсаторов
Первая и вторая позиция значащие цифры значении емкости конденсатора. Третья — количество нулей. Общее значение дает емкость в пФ. К примеру емкость конденсатора, изображенного на рисунке выше 4700000 пФ или 4.7 мкФ.
Также применяется система маркировки из двух символов. Первый — буква, представляющая числовое значение; второй символ — множитель (степень десяти). Общее значение дает емкость в пФ.
Буква | A | B | C | D | E | F | G | H | J | K | a | L |
Значение | 1.0 | 1.1 | 1.2 | 1.3 | 1.5 | 1.6 | 1.8 | 2.0 | 2.2 | 2.4 | 25 | 2.7 |
Буква | M | N | b | P | Q | d | R | e | S | f | T | U |
Значение | 3.0 | 3.3 | 3.5 | 3.6 | 3.9 | 4.0 | 4.3 | 4.5 | 4.7 | 5.0 | 5.1 | 5.6 |
Буква | m | V | W | n | X | t | Y | y | Z | |||
Значение | 6.0 | 6.2 | 6.8 | 7.0 | 7.5 | 8.0 | 8.2 | 9.0 | 9.1 |
Цифра | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
Множитель | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 10-1 |
К примеру A5 = 1.0 x 105 = 100,000 пФ = 0.1 мкФ, или f9 = 5.0 x 10-1 = 0.5 пФ
Для танталовых конденсаторов часто первым символом указывается напряжение в соответствии с таблицей.
Напряжение (вольт) | 4 | 6.3 | 10 | 16 | 20 | 25 | 35 | 50 |
Код | G | J | A | C | D | E | V | H |
Маркировка импортных smd
Маркировка импортных SMD транзисторов происходит в основном по нескольким принятым системам. Одна из них – это система маркировки полупроводниковых приборов JEDEC.Согласно ей первый элемент – это число п-н переходов, второй элемент – тип номинал, третий – серийный номер, при наличие четвертого – модификации.
Вторая распространенная система маркировка – европейская. Согласно ей обозначение SMD транзисторов происходит по следующей схеме: первый элемент – тип исходного материала, второй – подкласс прибора, третий элемент – определение применение данного элемента, четвертый и пятый – основную спецификацию элемента.
Третьей популярной системой маркировки является японская. Эта система скомбинировала в себе две предыдущие. Согласно ей первый элемент – класс прибора, второй – буква S, ставится на всех полупроводниках, третий – тип прибора по исполнению, четвертый – регистрационный номер, пятый – индекс модификации, шестой – (необязательный) отношение к специальным стандартам.
Что бы к Вам ни попало в руки, для полной идентификации данного элемента следует применять маркировочные таблицы и по ним определить все характеристики данного элемента. По оценкам специалистов соотношение между производством ЭРЭ в обычном и SMD-исполнении должно приблизиться к 30:70. Многие радиолюбители уже начинают с успехом осваивать применение SMD в своих конструкциях.
Маркировка на практике
Применение чип-компонентов в радиолюбительской практике тоже возможно, даже нужно, так как позволяет уменьшить вес, размер и стоимость готового изделия. Да ещё и сверлить практически не придётся. Другое важное качество компонентов поверхностного монтажа заключается в том, что благодаря своим малым размерам они вносят меньше паразитных явлений.
Дело в том, что любой электронный компонент, даже простой резистор, обладает не только активным сопротивлением, но также паразитными ёмкостью и индуктивностью, которые могут проявится в виде паразитных сигналов или неправильной работы схемы. SMD-компоненты обладают малыми размерами, что помогает снизить паразитную емкость и индуктивность компонента, поэтому улучшается работа схемы с малыми сигналами или на высоких частотах.
Немного о самих smd приборах
Основное преимуществом SMD компонентов заключается в возможности их компактного использования на печатных платах, где компоновку, монтаж и пайку выполняют автоматы. При этом и маркировку SMD компонентов делают также роботы с особой быстротой и точностью.
В этой статье мы представим варианты опознания номинальных значений различных электронных приборов из категории СМД с помощью вспомогательных таблиц. А в конце статьи есть ссылка на программу, использование которой можно значительно облегчить определение номиналов деталей и расшифровывать маркировку SMD приборов. Данное приложение содержит большую базу современных полупроводниковых приборов для поверхностного монтажа.
Кроме этого, хотелось бы упомянуть здесь о еще одном важном преимуществе поверхностного монтажа (SMT), которое заключается в свойстве этих элементов работать не внося существенные искажения в схему. Обосновывается это тем, что эти миниатюрные электронные элементы ввиду своих компактных размеров, имеют очень маленькую паразитную емкость и индуктивность, соответственно и малые помехи.
Таблица маркировки smd резисторов
Сопротивление smd резисторов может измеряться в ом (Ом), килоом (кОм), мегаом (МОм) и обозначаеться специальным кодом. Данная таблица поможет вам разобраться в маркировке обозначений при различных измерительных номиналах и подобрать нужные аналоги для замены.
Резисторы smd – это те же постоянные резисторы, только предназначенные для поверхностного монтажа на печатную плату. SMD резисторы значительно меньше, чем их аналогичные металлопленочные или металлооксидные резисторы. По стандарту они бывают квадратной, прямоугольной и круглой формы. Имеют очень низкий профиль по высоте. Вместо проволочных выводов обычных постоянных резисторов, которые выводами вставляются в отверстия печатной платы, у smd резисторов имеются на концах небольшие контакты, которые припаяны к поверхности корпуса smd резистора. Это избавляет от необходимости сверлить отверстия в печатной плате, и тем самым позволяет более эффективно и насыщенно использовать всю ее поверхность.
Таблица маркировки smd резисторов постоянного сопротивления
AliExpress заказать smd резисторы
Транзисторы в корпусе smd
СМД транзисторы выполнены в корпусах, которые соответствуют их максимальном мощности. Корпуса этих полупроводниковых элементов символично можно разделить на два вида: SOT и DPAK.
Здесь нужно пояснить — корпуса такого типа могут содержать в себе не только одиночный транзистор, но и целую сборку компонентов.
Заключение
Информация о маркировочных кодах, содержащаяся в литературе, требует критического подхода и осмысления. К сожалению, красиво оформленный каталог с безукоризненной полиграфией не гарантируют от опечаток, ошибок, разночтений и противоречий, поэтому исходите из данных, что приведены в справочнике о маркировке радиоэлементов.
В заключение хотелось бы поблагодарить источники, которые были использованы для подбора материала к данной статье: