Все об оперативной памяти — гайд и тесты в разных режимах работы | Оперативная память | Блог | Клуб DNS

Что может повредить модули памяти?

На самом деле факторов очень много. Среди наиболее частых причин выхода памяти из строя следует вспомнить статическое электричество на ваших руках. Особенно в то время, когда вы касаетесь к памяти. Так же неисправность блока питания компьютера, или перепады напряжения в сети.

Случается и так, что пользователи, желая повысить скорость работы памяти (разогнать ее) путем повышения питающего напряжения просто сжигают ее. Нежелательно также попадание пыли внутрь системного блока, поскольку это чревато как повышением температуры вплоть до перегрева карты памяти, так и банальным замыканием контактов.

Тестирование оперативной памяти
Тестирование оперативной памяти

Следует понимать, что модули памяти не поддаются ремонту, как другие отдельные части компьютера, поэтому следует выбирать модули, на которые дается нормальная гарантия, а не самые дешевые предложения.

Что собой представляет оперативная память и для чего она предназначена

Оперативная память сокращенно называется ОЗУ (оперативное запоминающее устройство) либо RAM — по-английски память произвольного (случайного) доступа, на сленге ее часто именуют «оперативка». Ниже представлен один из вариантов ее исполнения.

Процессор выполняет вычисления, но нужно сохранять промежуточные результаты. Кто помнит начальные классы в школе: «семь пишем, два в уме». Для этого и служит ОЗУ. Это обязательный элемент любой вычислительной машины. Первоначально RAM собирали на магнитных сердечниках и тому подобное, а объем записываемой в нее информации был минимален.

ОЗУ отличается от него тем, что зависит от напряжения питания, при выключении ПК все записанные байты стираются. Емкость оперативки для современных вычислений нужна относительно большая, несколько Гб, также немаловажна скорость обмена данными. Различают два типа ОЗУ — SRAM и DRAM, со статическим и динамическим доступом соответственно.

Первый тип основывается на том, что каждый бит хранится в отдельном триггере — ячейке из двух транзисторов. Данный вид памяти компьютера размещает гораздо меньше информации на единице площади кристалла, зато меньше подвержен повреждениям, и записанные данные остаются неизменными без дополнительных операций до снятия питания со схемы.

Используется он больше всего во внутренней памяти процессора, называемой кэшем и располагается на его кристаллах. Нас же интересует непосредственно ОЗУ компьютера. Работает она с использованием динамического доступа (DRAM), а для хранения информации используются конденсаторы.

Такой подход позволяет значительно увеличить емкость на единицу площади, но несколько увеличивает вероятность выхода некоторого количества ячеек хранения из строя при нештатных ситуациях, таких как «стресс» в виде перенапряжения, перегрева и тому подобное.

Варианты установки памяти

Первый шаг к стабильной и быстрой памяти — ее правильная установка. Просто старайтесь держать в уме следующие факты.

Установка одной, двух, трех или четырех планок — что лучше?

Для оптимального быстродействия ставить лучше четное количество планок памяти. Следующий график показывает, как меняется производительность в зависимости от количества установленных модулей. Дополнительно в него были добавлены два значения: комбинация из 4 ГБ и 8 ГБ модулей на частоте 1333 и 1600 МГц. Command Rate установлен на единицу.

Какой вывод можно сделать? Одна планка памяти выдает худшую производительность, так как отсутствует двухканальный режим. Две планки дают стандартную производительность. Три планки хуже, чем две, потому что контроллеру приходится работать одновременно с двухканальным и одноканальным режимами, а ваша система не может знать наверняка, когда какой требуется.

Четыре планки выдают чуть большую производительность (всего на 1-2 %), чем две, но не за счет увеличенной емкости, а за счет количества модулей, так как у контроллера в распоряжении появляется больше банков памяти, к которым можно обратиться (аналогично ранговости).

Как правильно установить две планки памяти, если у материнской платы четыре слота?

Если у вас четыре или более слотов под ОЗУ на материнской плате, тогда знайте, что они разделены на пары и обычно окрашены в разные цвета. Например, первая пара черная, а вторая красная. Распространенная ошибка, когда две планки ставят рядом в разные пары.

Это приводит к тому, что память будет работать в одноканальном режиме и выдавать вдвое меньшую скорость копирования, чем она могла бы быть. По этой же причине, когда ограничен бюджет, рекомендуют купить две планки по 4 ГБ, а не одну на 8 ГБ. Проверить, какой режим работы используется у вас в данный момент, можно с помощью программы CPU-Z.

Существуют также гибридные материнские платы, которые имеют слоты как DDR3, так и DDR4 (или DDR2 DDR3 на старых платах) одновременно. Память разных поколений вкупе использовать нельзя, компьютер просто не запустится.

Можно ли ставить память с разной частотой или разными таймингами вместе?

Оперативную память с разной частотой и разными таймингами можно использовать вкупе. В этом случае все модули заработают на параметрах более слабого. Обычно никаких конфликтов это не создает.

Можно ли ставить память c разной емкостью вместе?

Оперативную память разного объема тоже можно ставить вместе. В этом случае часть памяти работает в двухканальном режиме, а часть — в одноканальном. На практике это дает небольшой прирост производительности, но до полноценного двухканального режима немного не дотягивает.

Можно ли ставить память с разной ранговостью вместе?

Совмещать одноранговую и двухранговую памяти парой в двухканальный режим не рекомендуется, так как это может приводить к вылету системы. Опять же, все зависит от вашей материнской платы. А вот поставить две разные пары можно — если первая пара модулей будет двухранговой, а вторая — однораноговой, то все должно быть нормально. Более подробно об этом параметре смотрите в разделе характеристик.

Максимальный объем: сколько можно поставить?

*{padding:0;margin:0;overflow:hidden}html,body{height:100%}img,svg{position:absolute;width:100%;top:0;bottom:0;margin:auto}svg{left:calc(50% – 34px)}Все об оперативной памяти — гайд и тесты в разных режимах работы | Оперативная память | Блог | Клуб DNS” frameborder=”0″ allow=”accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture” allowfullscreen>

У каждой материнской платы есть свои ограничения: максимальный поддерживаемый объем памяти и допустимая емкость одного модуля. Необходимо смотреть спецификации:

Видим, что материнка имеет 4 слота и поддерживает до 32 ГБ памяти. Простым делением узнаем, что максимальный объем одного модуля равен 8 гигабайтам.

Если попытаться поставить 16-гигабайтный модуль в плату, которая поддерживает только 8-гигабайтный, то компьютер либо не запустится, либо увидит только часть памяти.

Взаимодействие памяти с комплектующими пк

Оперативная память — это посредник ваших комплектующих, представляющий из себя следующую схему: Быстрая память → более быстрый процессор → лучшее использование потенциала видеокарты → больший FPS в играх.

Если вашей игре не хватает производительности процессора/памяти, то и видеокарта не сможет грузиться на 100 % (при отключенной вертикальной синхронизации).

Влияние памяти на процессор

Оперативная память тесно связана с вашим процессором. Чем быстрее память, тем лучше отклик процессора и его производительность. Простой разгон памяти может увеличить потенциал процессора до 15 %, что хорошо видно на примере тестов в программе WinRar.

Для полноты картины я решил провести еще один квартет тестов, для которых частота процессора была уменьшена до 2,4 ГГц и количество потоков уменьшено вдвое.

Здесь уже прирост чуть более ощутим в отличие от 1-кадрой разницы при частоте 4,2 ГГц.

Примечание: даже если ваша игра показывает, что процессор загружен всего на 50 %, это не обязательно означает, что ей хватает его производительности. То есть увеличение частоты процессора или памяти все равно может улучшить частоту кадров.

Влияние процессора на память

Что-что? И в обратном направлении тоже? Да, все верно: чем выше частота процессора, тем ниже латентность памяти. При этом количество ядер или потоков значения не имеют.

Следующий график наглядно показывает зависимость латентности от частоты процессора на разогнанном профиле памяти (2400 МГц). Command Rate выставлен на единицу.

Получается, что 43,2 наносекунды — это наилучшая латентность, которую мне удалось получить на тестовой конфигурации.

Влияние на дискретную видеокарту

Оперативная память не оказывает прямого воздействия на видеокарту, ведь у видеокарты есть собственная память, куда игрой складываются все необходимые графические данные.

:/>  Проверка оперативной памяти средствами Windows. -

Чтобы убедиться в этом наверняка, я использовал игровой бенчмарк Aliens vs. Predator Benchmark. Его преимущество состоит в минимальном использовании процессора. Разница между наихудшим одноканальным профилем памяти и наилучшим двухканальным профилем, при средней частоте кадров ≈175 составила… всего 1 фпс, что вообще в пределах погрешности.

Влияние на встроенную видеокарту

А вот для встроенных видеокарт все как раз таки наоборот — они не имеют собственной памяти и просто заимствуют оперативную. То есть, чем быстрее будет ваша память, тем более высокую частоту кадров в играх вы получите.

Для следующего графика будет использоваться встроенная Intel HD Graphics 4600. Для наглядности, базовый профиль JEDEC был протестирован в одноканальном и в двухканальном режимах, в графиках они отмечены как SCJ и DCJ соответственно.

Как запустить средство проверки памяти в windows 10 и предыдущих версиях системы

В случае, если операционная система запускается, вход в неё и работа возможны, вы можете использовать один из следующих вариантов запуска средства проверки памяти:

  1. Найти нужный пункт в разделе «Средства администрирования Windows» меню «Пуск».
  2. Нажать клавиши Win R на клавиатуре, ввести mdsched.exe и нажать Enter. Запуск средства диагностики памяти в меню Выполнить
  3. Открыть панель управления, выбрать пункт «Администрирование» и запустить «Средство проверки памяти Windows».
  4. Использовать поиск в панели задач Windows 10, начав вводить «Средство проверки памяти». Или встроенные средства поиска в предыдущих версиях ОС. Запуск средства проверки памяти через поиск Windows 10
  5. Вручную запустить файл C:WindowsSystem32MdSched.exe

Если же ситуация осложняется тем, что Windows не запускается, вход в неё невозможен, либо сразу после него происходят сбои, можно использовать следующие способы запуска средства диагностики оперативной памяти:

  1. Загрузить компьютер или ноутбук с загрузочной флешки с Windows 10 или другой версией Windows, можно и с загрузочного диска. На экране программы установки нажать клавиши Shift F10 (Shift Fn F10 на некоторых ноутбуках), ввести mdsexe в открывшейся командной строке и нажать Enter. После выбора в утилите проверки пункта «Выполнить перезагрузку и проверку», загружайте компьютер не с флешки, а с обычного загрузочного HDD или SSD. Запустить средство проверки памяти с загрузочной флешки
  2. Средство проверки памяти можно запустить из среды восстановления Windows 10 — нажав кнопку «Дополнительные параметры» на синем экране с ошибкой или, находясь на экране блокировки Windows 10 (с выбором имени пользователя) нажать по изображенной справа внизу кнопке «Питания», а затем, удерживая Shift, нажать «Перезагрузка». В среде восстановления выбираем «Поиск и устранение неисправностей» — «Дополнительные параметры» — «Командная строка». А в ней, как и в предыдущем случае используем команду mdsched.exe. Запуск средства диагностики памяти в среде восстановления
  3. Если у вас есть подготовленный диск восстановления Windows, запуск можно осуществить, загрузившись с него.

Профили памяти

Как посмотреть поддерживаемые профили памяти?

Если памяти нет у вас на руках, то очевидным вариантом будет просто загуглить маркировку интересующей вас модели и перейти на сайт производителя, почитать обзоры и т. д.

Если память уже установлена в вашем ПК, то можно воспользоваться бесплатной утилитой CPU-Z. Это максимально легкая и простая программа, которая показывает четыре основных профиля (но не все поддерживаемые). Просто выбираем номер слота в разделе SPD и смотрим данные.

Также существует и платный аналог — AIDA64. Она не только показывает все профили памяти, но еще и позволяет узнать латентность и пропускную способность.

Что такое JEDEC и XMP?

Это названия профилей вашей оперативной памяти.

JEDEC — стандарт, предлагающий единый базовый набор таймингов для определенной частоты, на которой и заработает ваша память после установки в ПК. Помимо основного профиля, который обычно и указан в характеристиках товара, есть еще несколько дополнительных скрытых. Нужны они для того, чтобы память могла работать и на пониженных частотах, если материнская плата не поддерживает высокие.

XMP — это оверклокерский набор параметров, тщательно протестированный с завода конкретно для вашей модели памяти. Профиль не следует каким-либо стандартам и предлагает наилучшие параметры, выбранные производителем. То есть, выбрав данный профиль в настройках биоса, вы получите легкий и безопасный разгон.

Пример памяти из конфигурации: ее базовый профиль JEDEC это 1600 МГц с таймингами [11-11-11-28], простым переключением на XMP-1866 частота меняется на 1866 МГц с таймингами [9-10-11-27], то есть мы получаем не только повышенную частоту, но и более низкие задержки, что точно хорошо скажется на производительности системы.

Что будет, если в биосе выставить неподдерживаемый профиль? 

В случае, если вы попытаетесь выставить в биосе частоту, для которой нет профиля у вашей памяти, то произойдет один из трех возможных вариантов:

  1. Материнская плата выставит тайминги от поддерживаемого профиля, максимально близкого к той частоте, что выставили вы.
  2. Материнская плата выставит универсальный оверклокерский набор таймингов, В моем случае это [11-13-13-35], и они подходят для всех частот вплоть до 2400 МГц.
  3. Компьютер попросту не запустится и потребуется сброс настроек.

Тесты профилей в приложениях

Для диаграмм я решил использовать 5 профилей: наихудший JEDEC, родной JEDEC, оба поддерживаемых XMP профиля и разогнанный профиль (OC).

«Сэм», «Резидент» и «Метро» восприняли увеличение скорости памяти равнодушно, так как им полностью хватает ресурсов процессора. А вот «Трекмания» активно умеет использовать только одно ядро, которое загружено на 100 %, поэтому память оказывает ощутимое влияние на частоту кадров.

Прочие вопросы

Что такое файл подкачки?

Файл подкачки — это специальный файл на вашем накопителе, в который система может сливать информацию с оперативной памяти, чтобы на ней освободилось место.

Например, если у вас всего 4 ГБ памяти, операционная система в данный момент использует 2 ГБ, и вы хотите запустить игру, которой единолично требуется 3 ГБ памяти, то ОС сохраняет данные ненужных в данный момент процессов в файл подкачки, что освобождает место в оперативной памяти и дает возможность запустить ту самую игру.

Часть вашего накопителя просто становится очень медленной оперативной памятью. И если системе внезапно понадобится считать эти самые данные из файла подкачки, то это приведет к долгим загрузкам, лагам и подвисаниям.

Даже если у вас много оперативной памяти, совсем отключать файл подкачки не рекомендуется, так как многие приложения спроектированы использовать его в любом случае. В общем, для файла подкачки можно выделить 4-8 ГБ свободного места — этого вполне достаточно.

Что лучше — DDR3 или DDR4?

Немного больной вопрос современного гейминга, так как DDR4 проигрывает по показателям таймингов, но имеет больший потенциал на частоты.

В качестве примера возьмем частоту 2133 МГц — это высокое значение для DDR3 и одно из базовых для DDR4. И если стандарт JEDEC предлагает тайминги 13-13-13 для DDR3-2133, то для DDR4-2133 эти значения составляют 15-15-15, что ощутимо хуже. Получается, чтобы DDR4 начала демонстрировать превосходство над DDR3 ей нужно иметь примерно на 30 % более высокую частоту.

Бюджетная DDR4 даже может являться причиной фризов в требовательных играх из-за высоких таймингов и, соответственно, латентности. Но выбора у нас в любом случае нет, так как DDR3 постепенно уходит в небытие, а на горизонте уже маячит DDR5.

Нужен ли памяти радиатор или кулер?

Память греется слабо относительно прочих комплектующих. Ее температура обычно не превышает 65 градусов, то есть она может без проблем обходиться без радиатора и тем более без специального кулера. Однако память с красивой металлической оболочкой выглядит намного лучше, да и от пыли и случайных царапин обеспечивается неплохая защита. Плюс дополнительная страховка от перегрева для оверклокерских решений.

Почему мнения о важности памяти расходятся?

Причиной тому может быть множество факторов, будь то динамическое окружение в играх или кривая сборка операционной системы ютуб блогера. Но в основном это разные конфигурации ПК, на которых проводятся тесты. Например, процессоры AMD, как правило, сильнее зависят от памяти, чем Intel.

:/>  Используем средство проверки памяти Windows для тестирования RAM | remontka.pro

Да и разница между встроенной и дискретной графикой колоссальна. И если пользователь изначально имеет средний процессор и так себе память, то их оптимизация явно даст больший эффект, чем попытка разогнать и без того хорошую сборку. Поэтому мнения и расходятся: одни говорят, что влияние памяти нулевое, а другие получают до 30 % прироста производительности.

Разгон

Разгон позволяет взять частоты, которые значительно превышают стандартные значения профилей вашей памяти. На примере DDR3 — переключить с 1333 МГц на 1600 МГц удается почти всегда. Само собой, материнская плата тоже должна поддерживать большую частоту.

Вариант №1. Простой универсальный

Идеальная попытка/способ разгона для новичков. Мы просто повышаем в биосе частоту на одну ступень из списка доступных и смотрим, что из этого получилось. Компьютер запустился? Отлично, повышаем еще. Как только нашли максимальную стабильную частоту, то проверяем латентность через айду, стала ли она лучше, или такой разгон был бессмысленнен, и параметры стоит вернуть на место.

В моем случае память разогналась до частоты 2400 МГц. Универсальный набор таймингов идеально вписался, значения [11-13-13-35] стали для нее наилучшими и дополнительных действий не потребовалось.

Вариант №2. Продвинутая настройка

Автоподбор таймингов платой не всегда может хорошо подойти под ту частоту, которую вы выставили. Задержки могут получиться слишком большими, что в итоге даст меньшую производительность, чем на стандартном профиле. Или же тайминги останутся неизменными, слишком низкими, что попросту не даст взять высокую частоту.

В этом случае разгон проводится вручную, и я объясню его на примере памяти с частотой 1600 МГц и таймингами 11-11-11 (четвертый тайминг я намеренно не указал, так как частота на него практически не влияет, можно использовать базовый).

  1. Повышаем тайминги сразу на 5 тактов до 16-16-16.
  2. Начинаем искать максимальную частоту: ставим 1866 МГц — компьютер стартует. 2133 МГц — компьютер стартует. 2400 МГц — компьютер стартует. 2600 МГц — компьютер не запускается. Откатываемся обратно на 2400 МГц — это и есть наша наибольшая частота.
  3. Оптимизируем тайминги, так как 16-16-16 — вероятно не лучший набор для нашей частоты. Поочередно понижая каждый из них на единичку и перезагружаясь, получаем значения 11-13-13, которые будут наилучшими для частоты 2400 МГц. Вот и весь принцип разгона.

Стоп-стоп, а как же напряжение? Да, при разгоне часто советуют повысить напряжение, якобы это улучшает стабильность и дает больший разгонный потенциал. На практике, память разгоняется и стабильно работает даже без повышения напряжения, либо же материнская плата сделает все за вас в режиме Auto.

Главное — по окончании разгона не забудьте проверить память на ошибки, например встроенной в операционную систему утилитой «Средство проверки памяти Windows» или же программой MemTest86. Ведь иногда память может становиться нестабильной после разгона, и проявится это далеко не сразу — например, на следующий день внезапно зависнет система или игра. В таком случае тайминги нужно будет повысить дополнительно еще на 1 такт или же вовсе вернуть настройки по умолчанию.

Что делать, если после разгона памяти компьютер перестал запускаться?

Если компьютер ушел в бесконечный цикл перезагрузки, то можно попробовать обесточить блок питания примерно на 10 секунд, а затем снова включить. Биос выдаст сообщение в духе «Overclocking Failed» и даст вам возможность поменять настройки или сбросить их. Работает не на всех платах.

Второй вариант — нажать специальную кнопку на плате для сброса настроек биоса. Обычно она подписана как «clr_cmos».

Третий способ, который точно сработает — вытащить батарейку материнской платы на несколько минут и вставить обратно. В результате такого действия сбросятся все настройки биоса.

Симптомы неисправности оперативной памяти

На неисправность оперативной памяти (RAM) указывают следующие признаки:

  1. Компьютер включается, но на экране нет изображения.
  2. Во время загрузки или работы системы вылетает синий экран с ошибками BSOD.
  3. Постоянные вылеты из программ, использующие интенсивно оперативную память: 3D приложения, игры, видеомонтаж и т.д.
  4. Во время установки Windows выходит ошибка.

Если периодически выскакивает синий экран во время работы или при загрузке системы, то это повод проверить оперативку на ошибки.

синий экран
Синий экран в Windows 7

У меня был случай, при установке Windows 7 на ноутбуке выходила ошибка 0х80070570. После проверки оперативной памяти выяснилось, что причиной была — неисправность одной из планок оперативки.

ошибка 0x80070570
Неисправность оперативной памяти — при установке Windows 7 выходит ошибка 0x80070570

Как я выяснил неисправность оперативной памяти в ноутбуке читайте ниже в статье.

Способ 1. диагностика средствами windows

Чтобы запустить проверку оперативной памяти, достаточно воспользоваться средствами виндовс.

Для этого заходим в Пуск и в поле поиска вводим: оператив. Выходит список утилит, где выбираем Диагностика проблем оперативной памяти компьютера.

диагностика оперативы
Запуск диагностики памяти в Windows 7

Или ещё вариант. Нажимаете Win R

win r
Горячие клавиши Win R

Введите в поле: mdsched, нажмите ок.

Откроется средство проверки памяти Windows. Выберите Выполнить перезагрузку и проверку.

mdsched
Проверка компьютера на предмет неполадок с памятью

После чего компьютер перезагрузится и запуститься диагностика оперативной памяти. По прошествии двух проходов, если неполадки не найдены, то значит все ок.

проверка оперативы без ошибок
Диагностика оперативной памяти — неполадки не обнаружены

Если же появится надпись: обнаружены проблемы оборудования, то значит оперативная память с ошибками.

оперативная память с ошибками
Диагностика оперативной памяти — обнаружены проблемы

Тест памяти, убивающий ноутбуки — почти детектив

(UPD: помимо схем добавлена фотография платы)
(UPD2: информация из IRC-канала libreboot)

  • В RINKAN есть защита по току на 55mA, функционал можно смотреть в описании на TB62501F.
  • PMH7 — это массив вентилей (“same thing as FPGA just programmed with up to 3 metal layers, kinda like maskrom”), у Toshiba он назывался TC-200G
  • PMH7 подключен не только к EC, но и к ICH по шине LPC и выглядит с точки зрения хоста как GPIO-extender.
  • Они уверены что неиспользуемые пины PMH действительно висят в воздухе, а замыкание по пинам с большой вероятностью спалит только выходы PMH, но не LDO
  • Предполагают спонтанный выход из строя двух RINKAN по независящим друг от друга причинам (возможно, спровоцированным нагревом мат.платы в процессе мемтеста)
  • Рекомендуют менять RINKAN на такую же микросхему от ROHM: BD4175KVT-BD4176KVT-BD41760KVT, стоимость около $2
  • Согласны, что нужно провести эксперимент по запуску memtest с ограничением по току

Недавно у нас произошла душераздирающая история — за одно утро умерли два ноутбука Lenovo T500. Умер бы один — никто и разбираться не стал. Но два за одно утро — это уже слишком! Тем более, что по крайней мере один из них (и это подтверждают три пользователя!) нормально работал до последней минуты, был выключен кнопкой питания, перенесен за 100 метров в переговорку и… не включился.

Естественно, в первую очередь были опробованы все кустарные способы реанимации: заменить батарею, заменить адаптер питания… Вытащить батарею и обесточить, сбросить CMOS и так далее… Результат? Ровно ноль — ноутбуки продолжали находиться в состоянии кирпичей.

Стали восстанавливать картину событий, чтобы найти хоть какую-то зацепку. Выяснилось следующее:

Очевидно, что смерть ноутбуков должна быть связана с одной из трех вещей: адаптер питания, проектор, или memtest. Но с чем именно ?

В первую очередь, проверили проектор. Криминала не нашли, а кроме того выяснили что в этот день (но позже) к нему подключали другие ноутбуки, которые остались живы и здоровы. Во вторую очередь проверили адаптер питания — он вроде бы занижал напряжение, и его изолировали в карантин.

Ноутбуки отдали в сервис, который вернул их обратно со следующим результатом: “отказ материнской платы, запчасти отсутствуют!”. Пришлось вскрывать тушки самим (благо в сети можно найти и схемы и сервисные руководства на старую серию Thinkpad-ов).

К этому моменту все стали (методом исключения) подозревать в гибели ноутбуков memtest. Но было совершенно не очевидно — как именно? В конце концов, оставалась вероятность что гибель ноутбуков — это редкое, неприятное, но все же совпадение. Ан нет! Или да… В общем, пока точно не знаем.

:/>  Программы для оперативной памяти скачать бесплатно » Страница 3

Здесь следует сделать лирическое отступление о построении системы управления питанием на буках IBM/Lenovo (по крайней мере старых серий). В более простых устройствах, управление питанием отдается либо процессору/чипсету, либо специализированному контроллеру материнской платы (System controller, он же Embedded controller). Условно говоря, эта штука отвечает за рефлекторно-спинномозговые функции ноутбука: переключение источников тока, заряд батареи, опознание батареек/vendor lock-in, и тому подобные штуки. Но не в IBM/Lenovo!

Инженеры IBM, видимо, задумывались над тем, что прошивка EC может содержать ошибки или сам контроллер вдруг зависнет. Разумеется, у EC есть свой watchdog, но и он не панацея. Поэтому, в обязанности EC входит только генерация высокоуровневых сигналов управления питанием. Силовые ключи же отпирают и запирают две специализированные микросхемы (и не бездумно, а сопоставляя желания EC с показаниями термодатчиков, наличием требуемых для очередного шага напряжений на шинах и т.п.). Эти микросхемы: RINKAN (расшифровка неизвестна) и PMH_7 (Power Management Hub rev7)

Обратите внимание, что RINKAN не имеет выходов на шины CPU — он в принципе недостижим для процессора. Одна из важных (и неочевидных) функций RINKAN — это генерация стабильного напряжения 3.3v на шину VCC3SW (назовем ее стартовой шиной). Поскольку рядом нет никаких дросселей — можно предположить, что построен этот регулятор по простой линейной схеме. То есть где-то там внутри сидит транзистор с обвязкой и своим активным сопротивлением высаживает мощность, оставляя после себя только 3.3v. Запитывается этот регулятор по ноге VREGIN20, на которую через диоды объединены все источники питания ноутбука (док-станция, адаптер питания, главная батарея и батарея ultrabay). То есть он работает вообще всегда (потому и маломощный — нужен очень малый ток собственного потребления!)

PMH — более интеллектуальная микросхема. Как минимум, у нее есть связь с EC по шине SPI. Кроме того, она включает или выключает целую кучу напряжений и тактовых сигналов на материнской плате ноутбука. Обе микросхемы заказные, без наличия datasheet-ов. Поскольку Lenovo/IBM использует одни и те же заказные микросхемы для разных линеек устройств — некоторые ноги PMH в T500-ом не используются. Однако, вряд ли их оставили висеть в воздухе. Типовые рекомендации предлагают подтягивать неиспользуемые выводы либо к питанию схемы, либо к земле. Запомним это.

Несмотря на отсутствие документации, команда проекта Coreboot сумела (сопоставляя схемы ноутбуков серии T60, T40 и старше — где функции RINKAN/PMH еще были разделены между микросхемами меньшей степени интеграции) накопать кое-что интересное. PMH доступен в адресном пространстве CPU.

Не напрямую, конечно, а через EC — но все-таки доступен!UPD: подключен к ICH по шине LPC (Low pin count — аналог ISA).

Чтобы поднять или опустить ногу PMH они используют следующую последовательность операций (

pmh7.c

):

    outb(reg, EC_LENOVO_PMH7_ADDR);
    val = inb(EC_LENOVO_PMH7_DATA);
    outb(reg, EC_LENOVO_PMH7_ADDR);
    outb(val | (1 << bit), EC_LENOVO_PMH7_DATA);

То есть сначала пишем в регистр EC (отображенный в адресное пространство CPU) код регистра PMH, а потом можем читать или записывать его содержимое. Хотим, например, включить подсветку (нога 55 PMH): пишем в регистр 0x55 бит 2 — все просто.

UPD: коллеги из проекта Libreboot считают описанный сценарий КЗ через PMH маловероятным, кроме того — должна была сработать защита по току в RINKAN на уровне 55mA

К большому сожалению, memtest делает примерно то же самое — читает и пишет разные значения в разные области памяти. Теоретически, BIOS должен описывать области памяти, зарезервированные под устройства ввода-вывода. А memtest не должен туда ничего записывать — но… записал! И, видимо, в какой-то момент то-ли поднял, то-ли опустил неудачную ногу PMH. Соответственно, через выходной транзистор ноги PMH, шина питания VCC3SW оказалась накоротко замкнута на землю…

Что было дальше? Дальше RINKAN начал греться. Потому что ток рос, транзитор PMH в ключевом режиме его без проблем протаскивал, а полуоткрытому транзистору в LDO RINKAN становилось все хуже. Но внешне, это никак не проявлялось: во включенном ноутбуке никто не ест с маломощного источника 3.3в, а питание подает специальный мощный DC/DC запитывающий главные шины 3.3 и 5 вольт соответственно.

Ну а когда нажали кнопку питания — главные шины обесточились. Питания же на стартовой шине 3.3в уже не было! И ноутбук превратился в

тыкву

кирпичик.

UPD: альтернативная теория (omz libreboot)

В сервисных центрах известна склонность RINKAN к выходу из строя. Коллеги из Libreboot дополнительно утверждают, что это особенно присуще контроллерам производства Toshiba (а ROHM получше будет). Соответственно, memtest всю дорогу был невиновен, а практически одновременный выход из строя двух ноутбуков произошел:

Результаты диагностики:

Первый ноутбук — плата COR5SOPV3 с двойной графикой. На шине VCC3SW вместо 3.3, всего 1.2 вольта. Сопротивление на землю — около 400 ом. Аккуратно отпаяли и подняли выход преобразователя напряжения RINKAN. Сопротивление по шине сразу возросло до сотни кило-ом. Подали напряжение 3.3в с внешнего источника — бук ожил.

В результате, подобрали внешний маломощный LDO (LP2930-3.3), который питает стартовую шину вместо RINKAN-а. По итогам тестов обнаружилось, что перенесенная клиническая смерть оставила отпечаток на характере устройства — ноутбук отказывается включаться, если в него вставлена батарея но не вставлен адаптер. Хотите включить — вытащите батарею, включите адаптер питания, и после этого батарею можно вставлять обратно. Все остальные функции (заряд, автономная работа, сон, и т.д) без проблем, а включаться — только так и не иначе. Заморачиваться не стали — решили вопрос административно: использовать сон или перезагрузку вместо выключения. Первому страдальцу повезло!

А второму — нет… Там плата C5ISOVP с интегрированной графикой — напряжения на шине нет совсем, и сопротивление на землю — десятки ом. После отрывания ноги VCC3SW лучше не стало — то же малое сопротивление по VREGIN20. Оторвали еще и ее, включили внешнее питание на стартовую шину — увидели 3.3 и 5 вольт на главной. Однако, несмотря на обнадеживающее начало, сигналов Power-good на выходе PMH/RINKAN не появилось и система стартовать не смогла. Видимо, повреждена внутренняя логика микросхем, и это не лечится…

Весьма вероятно, что memtest может убивать таким образом ноутбуки начиная с серии T6x, и заканчивая серией T420/520 включительно. Начиная с T430/530 изменен способ коммуникации с EC, и записью в память до регистров PMH долезть нельзя в принципе. Возможно, этому подвержены только определенные версии BIOS или прошивки EC. Багрепорт debian-мейнтейнерам пакета отписан, может быть с апстримами чего и найдут…

Точная причина выхода из строя двух ноутбуков после запуска memtest неизвестна. Эксперимент, который сможет установить — вызывает ли memtest нерасчетное потребление тока с шины стартового питания — запланирован, но дата проведения пока не определена. О результатах сообщим дополнительно.

Запуская memtest на ноутбуках Lenovo серий T6x до T420/520 включительно, следует взвешивать потенциальный риск и пользу этого мероприятия. В случае, если вы запустили тест, и он не привел (или привел) к окирпичиванию или зависанию ноутбука — просьба написать в комментарии результат с указанием модели ноутбука и временем работы теста.

На этом все — удачи!

Оставьте комментарий

Adblock
detector